A lithium-containing nanoporous coating on entangled titanium scaffold can enhance osseointegration through Wnt/β-catenin pathway.

[1]  Courtney M. Karner,et al.  Wnt signaling and cellular metabolism in osteoblasts , 2017, Cellular and Molecular Life Sciences.

[2]  Xianlong Zhang,et al.  Calcium Plasma Implanted Titanium Surface with Hierarchical Microstructure for Improving the Bone Formation. , 2015, ACS applied materials & interfaces.

[3]  A. A. Zadpoor,et al.  Osteostatin-coated porous titanium can improve early bone regeneration of cortical bone defects in rats. , 2015, Tissue engineering. Part A.

[4]  M. Hirata,et al.  Erratum to “Acceleration of bone regeneration by local application of lithium: Wnt signal-mediated osteoblastogenesis and Wnt signal-independent suppression of osteoclastogenesis” [Biochem. Pharmacol. 90 (2014) 397–405] , 2014 .

[5]  M. Hirata,et al.  Acceleration of bone regeneration by local application of lithium: Wnt signal-mediated osteoblastogenesis and Wnt signal-independent suppression of osteoclastogenesis. , 2014, Biochemical pharmacology.

[6]  Michiel Mulier,et al.  Bone regeneration performance of surface-treated porous titanium. , 2014, Biomaterials.

[7]  Xiang Li,et al.  The promotion of osteointegration under diabetic conditions using chitosan/hydroxyapatite composite coating on porous titanium surfaces. , 2014, Biomaterials.

[8]  Chengtie Wu,et al.  A Bi‐Lineage Conducive Scaffold for Osteochondral Defect Regeneration , 2014 .

[9]  H. Matusiewicz Potential release of in vivo trace metals from metallic medical implants in the human body: from ions to nanoparticles--a systematic analytical review. , 2014, Acta biomaterialia.

[10]  C. Galli,et al.  GSK3b-inhibitor lithium chloride enhances activation of Wnt canonical signaling and osteoblast differentiation on hydrophilic titanium surfaces. , 2013, Clinical oral implants research.

[11]  H. Zreiqat,et al.  The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration. , 2013, Biomaterials.

[12]  S. Kundu,et al.  The promotion of osseointegration of titanium surfaces by coating with silk protein sericin. , 2013, Biomaterials.

[13]  P. Giannoudis,et al.  Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. , 2011, Injury.

[14]  Lintao Cai,et al.  Strontium Enhances Osteogenic Differentiation of Mesenchymal Stem Cells and In Vivo Bone Formation by Activating Wnt/Catenin Signaling , 2011, Stem cells.

[15]  G. Shen,et al.  Lithium Delivery Enhances Bone Growth during Midpalatal Expansion , 2011, Journal of dental research.

[16]  C. Galli,et al.  Titanium Topography Controls FoxO/β-catenin Signaling , 2011, Journal of dental research.

[17]  G. Thompson,et al.  Effect of microplasma modes and electrolyte composition on micro-arc oxidation coatings on titanium for medical applications , 2010 .

[18]  Yong Han,et al.  Microstructure and bioactivity of Ca, P and Sr doped TiO2 coating formed on porous titanium by micro-arc oxidation , 2010 .

[19]  J. Helms,et al.  The acceleration of implant osseointegration by liposomal Wnt3a. , 2010, Biomaterials.

[20]  O. Fromigué,et al.  Essential Role of Nuclear Factor of Activated T Cells (NFAT)-mediated Wnt Signaling in Osteoblast Differentiation Induced by Strontium Ranelate* , 2010, The Journal of Biological Chemistry.

[21]  Ping Liu,et al.  Compressive and pseudo-elastic hysteresis behavior of entangled titanium wire materials , 2010 .

[22]  Sergey V. Dorozhkin,et al.  Bioceramics of calcium orthophosphates. , 2010, Biomaterials.

[23]  B. Gao,et al.  Improved biological performance of microarc-oxidized low-modulus Ti-24Nb-4Zr-7.9Sn alloy. , 2009, Journal of biomedical materials research. Part B, Applied biomaterials.

[24]  Xi He,et al.  Wnt/beta-catenin signaling: components, mechanisms, and diseases. , 2009, Developmental cell.

[25]  Julian R. Jones,et al.  Differentiation of fetal osteoblasts and formation of mineralized bone nodules by 45S5 Bioglass conditioned medium in the absence of osteogenic supplements. , 2009, Biomaterials.

[26]  Fuzhai Cui,et al.  The biocompatibility of nanostructured calcium phosphate coated on micro-arc oxidized titanium. , 2008, Biomaterials.

[27]  Chika Yokota,et al.  Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions , 2007, Development.

[28]  M. Almeida,et al.  Gone with the Wnts: β-Catenin, T-Cell Factor, Forkhead Box O, and Oxidative Stress in Age-Dependent Diseases of Bone, Lipid, and Glucose Metabolism , 2007 .

[29]  Kozo Nakamura,et al.  GSK-3β Controls Osteogenesis through Regulating Runx2 Activity , 2007, PloS one.

[30]  B. Alman,et al.  Beta-Catenin Signaling Plays a Disparate Role in Different Phases of Fracture Repair: Implications for Therapy to Improve Bone Healing , 2007, PLoS medicine.

[31]  T. Miclau,et al.  Autologous iliac crest bone graft: should it still be the gold standard for treating nonunions? , 2007, Injury.

[32]  R. Baron,et al.  Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Janet L Stein,et al.  Canonical WNT Signaling Promotes Osteogenesis by Directly Stimulating Runx2 Gene Expression* , 2005, Journal of Biological Chemistry.

[34]  M. Bouxsein,et al.  Decreased BMD and Limb Deformities in Mice Carrying Mutations in Both Lrp5 and Lrp6 , 2004, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[35]  Seong-Hyeon Hong,et al.  Biomimetic apatite coatings on micro-arc oxidized titania. , 2004, Biomaterials.

[36]  Jai-Young Koak,et al.  Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. , 2004, Biomaterials.

[37]  J. Papkoff,et al.  Activated β-catenin induces osteoblast differentiation of C3H10T1/2 cells and participates in BMP2 mediated signal transduction , 2003 .

[38]  M. Schou,et al.  Lithium treatment at 52. , 2001, Journal of affective disorders.

[39]  Miikka Vikkula,et al.  LDL Receptor-Related Protein 5 (LRP5) Affects Bone Accrual and Eye Development , 2001, Cell.

[40]  C. Lohmann,et al.  Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. , 1998, Biomaterials.

[41]  Ping Liu,et al.  Porous titanium materials with entangled wire structure for load-bearing biomedical applications. , 2012, Journal of the mechanical behavior of biomedical materials.

[42]  Mark L. Johnson,et al.  A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. , 2002, American journal of human genetics.