Positive Approximation and Interpolation Using Compactly Supported Radial Basis Functions

We discuss the problem of constrained approximation and interpolation of scattered data by using compactly supported radial basis functions, subjected to the constraint of preserving positivity. The approaches are presented to compute positive approximation and interpolation by solving the two corresponding optimization problems. Numerical experiments are provided to illustrate that the proposed method is flexible.

[1]  R. Schaback Creating Surfaces from Scattered Data Using Radial Basis Functions , 1995 .

[2]  Jochen W. Schmidt,et al.  Positivity of cubic polynomials on intervals and positive spline interpolation , 1988 .

[3]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[4]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[5]  L. Montefusco,et al.  Radial basis functions for the multivariate interpolation of large scattered data sets , 2002 .

[6]  S. BUTT,et al.  Preserving positivity using piecewise cubic interpolation , 1993, Comput. Graph..

[7]  Zongmin Wu,et al.  Compactly supported positive definite radial functions , 1995 .

[8]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[9]  P. Gordan Ueber die Auflösung linearer Gleichungen mit reellen Coefficienten , 1873 .

[10]  Muhammad Sarfraz,et al.  Positivity-preserving interpolation of positive data by rational cubics , 2008 .

[11]  Ken Brodlie,et al.  Constrained Visualization Using the Shepard Interpolation Family , 2005, Comput. Graph. Forum.

[12]  M. Floater,et al.  Multistep scattered data interpolation using compactly supported radial basis functions , 1996 .

[13]  M. J. D. Powell,et al.  Radial basis functions for multivariable interpolation: a review , 1987 .

[14]  Ken Brodlie,et al.  Curve drawing subject to positivity and more general constraints , 2003, Comput. Graph..