Compact Physical Model for Crosstalk in Spin-Wave Interconnects

We propose a formalism of a compact physical model for crosstalk noise analysis between two coplanar backward volume spin-wave interconnects. Comparing the amplitudes of the signal in the active line and the noise in the victim line, we introduce a figure of merit for crosstalk - the longitudinal or line-to-line coupling. It is shown that the crosstalk becomes prohibitively high as the edge-to-edge spacing between the lines goes down, and thus putting a limitation on the routing and placement in a spin-wave bus network. The position of the peak crosstalk noise coupling for different spacings and frequencies of excitation reveals a new limitation to the maximum interconnect length. Furthermore, the technique of superposition analogous to RLC interconnects is exploited to explain the complicated nature of crosstalk noise and develop a mechanism for modeling crosstalk. Finally, a compact physical model is derived using analytical expressions, which demonstrate a reasonably good agreement with the actual full micromagnetic simulation results.

[1]  J. Pearson,et al.  Realization of a spin-wave multiplexer , 2014, Nature Communications.

[2]  Kang L. Wang,et al.  Electric-field-induced spin wave generation using multiferroic magnetoelectric cells , 2014 .

[3]  E. Schlömann Demagnetizing Fields in Thin Magnetic Films Due to Surface Roughness , 1970 .

[4]  Dmitri E. Nikonov,et al.  Overview of Beyond-CMOS Devices and a Uniform Methodology for Their Benchmarking , 2013, Proceedings of the IEEE.

[5]  Csaba Andras Moritz,et al.  Spin wave nanofabric update , 2012, 2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH).

[6]  James D. Meindl,et al.  Compact distributed RLC interconnect models-Part II: Coupled line transient expressions and peak crosstalk in multilevel networks , 2000 .

[7]  Mircea R. Stan,et al.  The Promise of Nanomagnetics and Spintronics for Future Logic and Universal Memory , 2010, Proceedings of the IEEE.

[8]  P. Yang,et al.  Multilevel metal capacitance models for CAD design synthesis systems , 1992, IEEE Electron Device Letters.

[9]  Wolfgang Porod,et al.  Device and Architecture Outlook for Beyond CMOS Switches , 2010, Proceedings of the IEEE.

[10]  Lev Davidovich Landau,et al.  ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITY IN FERROMAGNETIC BODIES , 1935 .

[11]  Michael J. Donahue,et al.  Numerical Micromagnetics: Finite Difference Methods , 2007 .

[12]  Azad Naeemi,et al.  Non-volatile Clocked Spin Wave Interconnect for Beyond-CMOS Nanomagnet Pipelines , 2015, Scientific Reports.

[13]  Takayasu Sakurai,et al.  Closed-form expressions for interconnection delay, coupling, and crosstalk in VLSIs , 1993 .

[14]  Gwo-Ching Wang,et al.  Surface/interface-roughness-induced demagnetizing effect in thin magnetic films , 1999 .

[15]  Csaba Andras Moritz,et al.  Spin wave functions nanofabric update , 2011, 2011 IEEE/ACM International Symposium on Nanoscale Architectures.

[16]  Azad Naeemi,et al.  SPICE Circuit Modeling of PMA Spin Wave Bus Excited Using Magnetoelectric Effect , 2014, IEEE Transactions on Magnetics.

[17]  B. Leven,et al.  Design of a spin-wave majority gate employing mode selection , 2014, 1408.3235.

[18]  Kang L. Wang,et al.  Non-volatile magnonic logic circuits engineering , 2010, 1012.4768.

[19]  A. Serga,et al.  Magnon transistor for all-magnon data processing , 2014, Nature Communications.

[20]  T. Gilbert A Lagrangian Formulation of the Gyromagnetic Equation of the Magnetization Field , 1955 .

[21]  W. Williams,et al.  A generalization of the demagnetizing tensor for nonuniform magnetization , 1993 .

[22]  M. Lipson,et al.  Device Scaling Considerations for Nanophotonic CMOS Global Interconnects , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[23]  Kang L. Wang,et al.  Nano-scale computational architectures with spin wave bus , 2005 .

[24]  Stuart A. Wolf,et al.  Spintronics : A Spin-Based Electronics Vision for the Future , 2009 .

[25]  Dmitri E. Nikonov,et al.  Automotion of domain walls for spintronic interconnects , 2014 .

[26]  Dmitri E. Nikonov,et al.  Benchmarking of Beyond-CMOS Exploratory Devices for Logic Integrated Circuits , 2015, IEEE Journal on Exploratory Solid-State Computational Devices and Circuits.

[27]  Kang L. Wang,et al.  Magnonic logic circuits , 2010 .

[28]  J.A. Davis,et al.  Compact physical models for multilevel interconnect crosstalk in gigascale integration (GSI) , 2004, IEEE Transactions on Electron Devices.

[29]  James A. Hutchby,et al.  Limits to binary logic switch scaling - a gedanken model , 2003, Proc. IEEE.

[30]  Simon G. Bance Data storage and processing using magnetic nanowires , 2009 .