Transmission Capacity of Wireless Networks

Transmission capacity (TC) is a performance metric for wireless networks that measures the spatial intensity of successful transmissions per unit area, subject to a constraint on the permissible outage probability (where outage occurs when the SINR at a receiver is below a threshold). This volume gives a unified treatment of the TC framework that has been developed by the authors and their collaborators over the past decade. The mathematical framework underlying the analysis (reviewed in Ch. 2) is stochastic geometry: Poisson point processes model the locations of interferers, and (stable) shot noise processes represent the aggregate interference seen at a receiver. Ch. 3 presents TC results (exact, asymptotic, and bounds) on a simple model in order to illustrate a key strength of the framework: analytical tractability yields explicit performance dependence upon key model parameters. Ch. 4 presents enhancements to this basic model --- channel fading, variable link distances, and multi-hop. Ch. 5 presents four network design case studies well-suited to TC: i) spectrum management, ii) interference cancellation, iii) signal threshold transmission scheduling, and iv) power control. Ch. 6 studies the TC when nodes have multiple antennas, which provides a contrast vs. classical results that ignore interference.

[1]  W. Schottky Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern , 1918 .

[2]  S. Rice Mathematical analysis of random noise , 1944 .

[3]  D. Darling THE INFLUENCE OF THE MAXIMUM TERM IN THE ADDITION OF INDEPENDENT RANDOM VARIABLES , 1952 .

[4]  I. Slivnyak Some Properties of Stationary Flows of Homogeneous Random Events , 1962 .

[5]  V. Chistyakov A Theorem on Sums of Independent Positive Random Variables and Its Applications to Branching Random Processes , 1964 .

[6]  Norman Abramson,et al.  The Throughput of Packet Broadcasting Channels , 1977, IEEE Trans. Commun..

[7]  Max H. M. Costa,et al.  Writing on dirty paper , 1983, IEEE Trans. Inf. Theory.

[8]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[9]  Malvin Carl Teich,et al.  Power-law shot noise , 1990, IEEE Trans. Inf. Theory.

[10]  M. Taqqu,et al.  Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .

[11]  Gerard J. Foschini,et al.  Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas , 1996, Bell Labs Technical Journal.

[12]  John A. Gubner,et al.  Computation of Shot-Noise Probability Distributions and Densities , 1996, SIAM J. Sci. Comput..

[13]  C. Klüppelberg,et al.  Subexponential distributions , 1998 .

[14]  Dimitrios Hatzinakos,et al.  Analytic alpha-stable noise modeling in a Poisson field of interferers or scatterers , 1998, IEEE Trans. Signal Process..

[15]  Peter J. Smith,et al.  Some Bounds on the Distribution of Certain Quadratic Forms in Normal Random Variables , 1998 .

[16]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[17]  J. Baker Integration of radial functions , 1999 .

[18]  Panganamala Ramana Kumar,et al.  RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN , 2001 .

[19]  S. Nadarajah,et al.  Extreme Value Distributions: Theory and Applications , 2000 .

[20]  Alexander M. Haimovich,et al.  Performance analysis of maximal ratio combining and comparison with optimum combining for mobile radio communications with cochannel interference , 2000, IEEE Trans. Veh. Technol..

[21]  Larry J. Greenstein,et al.  Attainable throughput of an interference-limited multiple-input multiple-output (MIMO) cellular system , 2001, IEEE Trans. Commun..

[22]  J. L. Nolan Stable Distributions. Models for Heavy Tailed Data , 2001 .

[23]  Ram Ramanathan,et al.  On the performance of ad hoc networks with beamforming antennas , 2001, MobiHoc '01.

[24]  Sergio Verdú,et al.  Spectral efficiency in the wideband regime , 2002, IEEE Trans. Inf. Theory.

[25]  Rick S. Blum,et al.  On the capacity of cellular systems with MIMO , 2002, IEEE Commun. Lett..

[26]  Lizhong Zheng,et al.  Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels , 2003, IEEE Trans. Inf. Theory.

[27]  Rick S. Blum MIMO capacity with interference , 2003, IEEE J. Sel. Areas Commun..

[28]  Andrea J. Goldsmith,et al.  Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels , 2003, IEEE Trans. Inf. Theory.

[29]  Shlomo Shamai,et al.  On the Achievable Throughput of a Multiantenna , 2003 .

[30]  Rohit U. Nabar,et al.  Introduction to Space-Time Wireless Communications , 2003 .

[31]  R.S. Blum,et al.  On the rate regions for wireless MIMO ad hoc networks , 2004, IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall. 2004.

[32]  Wei Yu,et al.  Sum capacity of Gaussian vector broadcast channels , 2004, IEEE Transactions on Information Theory.

[33]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[34]  Abbas Jamalipour,et al.  Wireless communications , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[35]  Martin Haenggi,et al.  On distances in uniformly random networks , 2005, IEEE Transactions on Information Theory.

[36]  Jeffrey G. Andrews,et al.  Transmission capacity of wireless ad hoc networks with outage constraints , 2005, IEEE Transactions on Information Theory.

[37]  Biao Chen,et al.  MIMO communications in ad hoc networks , 2005, 2005 IEEE 61st Vehicular Technology Conference.

[38]  Nihar Jindal MIMO broadcast channels with finite rate feedback , 2005, GLOBECOM.

[39]  Ram Ramanathan,et al.  Ad hoc networking with directional antennas: a complete system solution , 2005, IEEE J. Sel. Areas Commun..

[40]  François Baccelli,et al.  An Aloha protocol for multihop mobile wireless networks , 2006, IEEE Transactions on Information Theory.

[41]  Shlomo Shamai,et al.  The Capacity Region of the Gaussian Multiple-Input Multiple-Output Broadcast Channel , 2006, IEEE Transactions on Information Theory.

[42]  Panganamala Ramana Kumar,et al.  Scaling Laws for Ad Hoc Wireless Networks: An Information Theoretic Approach , 2006, Found. Trends Netw..

[43]  Michael A. Jensen,et al.  Cross-layer issues in MAC protocol design for MIMO ad hoc networks , 2006, IEEE Wireless Communications.

[44]  Jeffrey G. Andrews,et al.  Overcoming interference in spatial multiplexing MIMO cellular networks , 2007, IEEE Wireless Communications.

[45]  Daniel W. Bliss,et al.  Spectral Efficiency in Single-Hop Ad-Hoc Wireless Networks with Interference Using Adaptive Antenna Arrays , 2007, IEEE Journal on Selected Areas in Communications.

[46]  Jeffrey G. Andrews,et al.  The Effect of Fading, Channel Inversion, and Threshold Scheduling on Ad Hoc Networks , 2007, IEEE Transactions on Information Theory.

[47]  Jeffrey G. Andrews,et al.  Capacity Scaling of Ad Hoc Networks with Spatial Diversity , 2007, 2007 IEEE International Symposium on Information Theory.

[48]  Jeffrey G. Andrews,et al.  Transmission Capacity of Wireless Ad Hoc Networks With Successive Interference Cancellation , 2007, IEEE Transactions on Information Theory.

[49]  Jeffrey G. Andrews,et al.  Fractional power control for decentralized wireless networks , 2007, IEEE Transactions on Wireless Communications.

[50]  Jeffrey G. Andrews,et al.  Bandwidth partitioning in decentralized wireless networks , 2007, IEEE Transactions on Wireless Communications.

[51]  Jeffrey G. Andrews,et al.  Adaptive rate control over multiple spatial channels in ad hoc networks , 2008, WiOpt 2008.

[52]  Martin Haenggi,et al.  Interference and Outage in Clustered Wireless Ad Hoc Networks , 2007, IEEE Transactions on Information Theory.

[53]  Jeffrey G. Andrews,et al.  Transmission capacity scaling of SDMA in wireless ad hoc networks , 2009, 2009 IEEE Information Theory Workshop.

[54]  James R. Zeidler,et al.  A delay-minimizing routing strategy for wireless multi-hop networks , 2009, 2009 7th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks.

[55]  H. Vincent Poor,et al.  On unbounded path-loss models: effects of singularity on wireless network performance , 2009, IEEE Journal on Selected Areas in Communications.

[56]  J. Zeidler,et al.  Spatial Multiplexing in Random Wireless Networks , 2009 .

[57]  François Baccelli,et al.  Stochastic Geometry and Wireless Networks, Volume 1: Theory , 2009, Found. Trends Netw..

[58]  Jeffrey G. Andrews,et al.  Resource-redistributive opportunistic scheduling for wireless systems , 2009, IEEE Transactions on Wireless Communications.

[59]  M. Haenggi,et al.  Interference in Large Wireless Networks , 2009, Found. Trends Netw..

[60]  Vladimir Mordachev,et al.  On node density - outage probability tradeoff in wireless networks , 2009, IEEE Journal on Selected Areas in Communications.

[61]  François Baccelli,et al.  Stochastic geometry and wireless networks , 2009 .

[62]  Robert W. Heath,et al.  Transmission capacity of ad-hoc networks with multiple antennas using transmit stream adaptation and interference cancelation , 2012, 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers.

[63]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[64]  J. Andrews,et al.  An Overview of the Transmission Capacity of Wireless Networks , 2008, IEEE Transactions on Communications.

[65]  Jeffrey G. Andrews,et al.  Transmission capacity of multi-antenna ad hoc networks with CSMA , 2010, 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers.

[66]  François Gagnon,et al.  Performance of Optimum Combining in a Poisson Field of Interferers and Rayleigh Fading Channels , 2010, IEEE Transactions on Wireless Communications.

[67]  Jeffrey G. Andrews,et al.  An upper bound on multi-hop transmission capacity with dynamic routing selection , 2010, ISIT.

[68]  Jeffrey G. Andrews,et al.  Random access transport capacity , 2009, IEEE Transactions on Wireless Communications.

[69]  Jeffrey G. Andrews,et al.  A Tractable Approach to Coverage and Rate in Cellular Networks , 2010, IEEE Transactions on Communications.

[70]  Matthew R. McKay,et al.  Open-Loop Spatial Multiplexing and Diversity Communications in Ad Hoc Networks , 2010, IEEE Transactions on Information Theory.

[71]  Gustavo de Veciana,et al.  Spatial reuse and fairness of mobile ad-hoc networks with channel-aware CSMA protocols , 2011, 2011 International Symposium of Modeling and Optimization of Mobile, Ad Hoc, and Wireless Networks.

[72]  Abbas El Gamal,et al.  Network Information Theory , 2021, 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT).

[73]  François Baccelli,et al.  On optimizing CSMA for wide area ad hoc networks , 2011, 2011 International Symposium of Modeling and Optimization of Mobile, Ad Hoc, and Wireless Networks.

[74]  Matthew R. McKay,et al.  Spatial Multiplexing with MMSE Receivers in Ad Hoc Networks , 2011, 2011 IEEE International Conference on Communications (ICC).

[75]  Jeffrey G. Andrews,et al.  Multi-Antenna Communication in Ad Hoc Networks: Achieving MIMO Gains with SIMO Transmission , 2008, IEEE Transactions on Communications.

[76]  Rahul Vaze Throughput-Delay-Reliability Tradeoff with ARQ in Wireless Ad Hoc Networks , 2011, IEEE Transactions on Wireless Communications.

[77]  Jeffrey G. Andrews,et al.  High-SIR Transmission Capacity of Wireless Networks With General Fading and Node Distribution , 2011, IEEE Transactions on Information Theory.

[78]  Jeffrey G. Andrews,et al.  Downlink SDMA with Limited Feedback in Interference-Limited Wireless Networks , 2011, IEEE Transactions on Wireless Communications.

[79]  Dongning Guo,et al.  Spatial Interference Cancellation for Multiantenna Mobile Ad Hoc Networks , 2008, IEEE Transactions on Information Theory.

[80]  Daniel W. Bliss,et al.  Asymptotic Spectral Efficiency of Multiantenna Links in Wireless Networks With Limited Tx CSI , 2010, IEEE Transactions on Information Theory.