The structure of the liquid-vapor interface of a gallium-tin binary alloy

We report the results of self-consistent quantum Monte Carlo simulations of the structure of the liquid-vapor interface of the alloy Sn0.09Ga0.81. Our calculations are in very good agreement with the experimental results reported by Lei, Huang and Rice [J. Chem. Phys. 107, 4051 (1997)]. In particular, our calculations confirm the experimentally inferred existence of a partial second layer of Sn below the complete outermost layer of Sn in the stratified liquid-vapor interface of this alloy.

[1]  S. Rice,et al.  Structure of the liquid-vapor interface of a metal from a simple model potential: Corresponding states of the alkali metals , 1998 .

[2]  S. Rice,et al.  Quantum Monte Carlo simulations of the structure in the liquid–vapor interface of BiGa binary alloys , 1998 .

[3]  Kieron Burke,et al.  Nonlocality of the density functional for exchange and correlation: Physical origins and chemical consequences , 1998 .

[4]  S. Rice,et al.  SELF-CONSISTENT QUANTUM MONTE CARLO SIMULATIONS OF THE STRUCTURE OF THE LIQUID-VAPOR INTERFACE OF A EUTECTIC INDIUM-GALLIUM ALLOY , 1998 .

[5]  R. Joarder,et al.  Ordering potentials : anomalous structural and thermodynamic properties of liquid binary alloys , 1998 .

[6]  S. Rice,et al.  Structure of liquid Ga and the liquid-vapor interface of Ga. , 1997 .

[7]  S. Rice,et al.  Structure of the liquid–vapor interface of a Sn:Ga alloy , 1997 .

[8]  M. J. Regan,et al.  X-ray Reflectivity Studies of Liquid Metal and Alloy Surfaces , 1997 .

[9]  S. Rice,et al.  In‐plane structure of the liquid–vapor interfaces of dilute bismuth:gallium alloys: X‐ray‐scattering studies , 1996 .

[10]  S. Rice,et al.  Surface segregation and layering in the liquid–vapor interface of a dilute bismuth:gallium alloy , 1996 .

[11]  S. Rice,et al.  SELF-CONSISTENT MONTE CARLO SIMULATION OF THE ELECTRON AND ION DISTRIBUTIONS IN THE LIQUID-VAPOR INTERFACE OF MAGNESIUM , 1994 .

[12]  S. Rice,et al.  Self‐consistent Monte Carlo simulations of the electron and ion distributions of inhomogeneous liquid alkali metals. I. Longitudinal and transverse density distributions in the liquid–vapor interface of a one‐component system , 1987 .

[13]  S. Rice,et al.  Self-consistent Monte Carlo simulations of the electron and ion distributions of inhomogeneous liquid alkali metals. II. Longitudinal and transverse density distributions in the liquid-vapor interface of binary metallic alloys , 1987 .

[14]  A. Maradudin,et al.  Static response of a jellium surface: The image potential and indirect interaction between two charges , 1984 .

[15]  D. Langreth,et al.  Beyond the local-density approximation in calculations of ground-state electronic properties , 1983 .

[16]  S. Rice,et al.  A pseudoatom theory for the liquid–vapor interface of simple metals: Computer simulation studies of sodium and cesium , 1983 .

[17]  S. Rice,et al.  A study of the liquid–vapor interface of mercury: Computer simulation results , 1983 .

[18]  S. Rice,et al.  Structure in the Density Profile at the Liquid-Metal-Vapor Interface , 1981 .

[19]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[20]  C. Woo,et al.  Electronic structure of metals: I. Energy independent model pseudopotential formalism? , 1975 .

[21]  Jr Robert W. Shaw Optimum Form of a Modified Heine-Abarenkov Model Potential for the Theory of Simple Metals , 1968 .

[22]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[23]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[24]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[25]  S. Rice,et al.  Computer simulation study of the structure of the liquid-vapor interface of mercury at 20, 100, and 200 °C , 1999 .

[26]  T. Gilbert,et al.  Soft‐Sphere Model for Closed‐Shell Atoms and Ions , 1968 .

[27]  N. H. March,et al.  The Thomas-Fermi approximation in quantum mechanics , 1957 .