Method of atmospheric density measurements during shuttle entry using ultraviolet-laser Rayleigh scattering

An analytical study and its experimental verification are described which show the performance capabilities and the hardware requirements of a method for measuring atmospheric density along the Space Shuttle flightpath during entry. Using onboard instrumentation, the technique relies on Rayleigh scattering of light from a pulsed ArF excimer laser operating at a wavelength of 193 nm. The method is shown to be capable of providing density measurements with an uncertainty of less than 1 percent and with a spatial resolution along the flightpath of 1 km, over an altitude range from 50 to 90 km. Experimental verification of the signal linearity and the expected signal-to-noise ratios is demonstrated in a simulation facility at conditions that duplicate the signal levels of the flight environment.

[1]  R. C. Blanchard,et al.  Shuttle Orbiter high resolution accelerometer package experiment - Preliminary flight results , 1985 .

[2]  C. O. Hines,et al.  INTERNAL ATMOSPHERIC GRAVITY WAVES AT IONOSPHERIC HEIGHTS , 1960 .

[3]  R. Lindzen Turbulence and stress owing to gravity wave and tidal breakdown , 1981 .

[4]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[5]  P. Rastogi,et al.  Scattering of radio waves from the mesosphere—2. Evidence for intermittent mesospheric turbulence , 1976 .

[6]  Dinesh K. Prabhu,et al.  Numerical solution of Space Shuttle Orbiter flowfield including real-gas effects , 1986 .

[7]  R. C. Blanchard,et al.  Determination of atmospheric properties for STS-1 aerothermodynamic investigations , 1981 .

[8]  J. Samson On the measurement of Rayleigh scattering , 1969 .

[9]  P. M. Siemers,et al.  Innovative Air Data System for the Space Shuttle Orbiter , 1983 .

[10]  D. Deirmendjian Scattering and Polarization Properties of Water Clouds and Hazes in the Visible and Infrared , 1964 .

[11]  B. Lewis,et al.  Oscillator strengths for the Schumann-Runge bands of 16O18O , 1987 .

[12]  Henry Levinstein,et al.  Detection of Optical and Infrared Radiation , 1978 .

[13]  A. D'Amico,et al.  Detection of optical and infrared radiation , 1980 .

[14]  Theodore A. Talay,et al.  Impact of atmospheric uncertainties and viscous interaction effects on the performance of aeroassisted orbital transfer vehicles , 1984 .

[15]  A. Giraud,et al.  Scattering of Radio Waves , 1978 .

[16]  R. Mckenzie A method of atmospheric density measurements during Shuttle entry using UV laser Rayleigh scattering , 1987 .

[17]  Richard P. Turco,et al.  Smoke and Dust Particles of Meteoric Origin in the Mesosphere and Stratosphere , 1980 .

[18]  Shardanand,et al.  Absolute Rayleigh scattering cross sections of gases and freons of stratospheric interest in the visible and ultraviolet regions , 1977 .

[19]  L. J. Cox Optical Properties of the Atmosphere , 1979 .

[20]  B. Edĺen,et al.  The Dispersion of Standard Air , 1953 .

[21]  R. Blanchard,et al.  The Shuttle Upper Atmosphere Mass Spectrometer Experiment , 1984 .

[22]  R. Penndorf,et al.  Tables of the Refractive Index for Standard Air and the Rayleigh Scattering Coefficient for the Spectral Region between 0.2 and 20.0 μ and Their Application to Atmospheric Optics , 1957 .

[23]  S. Gibson,et al.  Rotational variation of predissociation linewidth in the Schumann-Runge bands of 16O2 , 1986 .

[24]  G. Plass,et al.  Calculations of Reflected and Transmitted Radiance for Earth's Atmosphere. , 1968, Applied optics.

[25]  J. T. Findlay,et al.  Shuttle /STS-1/ entry trajectory reconstruction , 1981 .

[26]  Brenton Lewis,et al.  Oscillator strengths for the Schumam-Runge bands of 16O2 , 1986 .

[27]  P. M. Siemers,et al.  Shuttle Entry Air Data System concepts applied to Space Shuttle Orbiter flight pressure data to determine air data - STS 1-4 , 1983 .

[28]  M. Thekaekara Extraterrestrial solar spectrum, 3000-6100 a at 1-a intervals. , 1974, Applied optics.

[29]  F. Volz,et al.  Infrared refractive index of atmospheric aerosol substances. , 1972, Applied optics.