Selectively-informed particle swarm optimization

Particle swarm optimization (PSO) is a nature-inspired algorithm that has shown outstanding performance in solving many realistic problems. In the original PSO and most of its variants all particles are treated equally, overlooking the impact of structural heterogeneity on individual behavior. Here we employ complex networks to represent the population structure of swarms and propose a selectively-informed PSO (SIPSO), in which the particles choose different learning strategies based on their connections: a densely-connected hub particle gets full information from all of its neighbors while a non-hub particle with few connections can only follow a single yet best-performed neighbor. Extensive numerical experiments on widely-used benchmark functions show that our SIPSO algorithm remarkably outperforms the PSO and its existing variants in success rate, solution quality, and convergence speed. We also explore the evolution process from a microscopic point of view, leading to the discovery of different roles that the particles play in optimization. The hub particles guide the optimization process towards correct directions while the non-hub particles maintain the necessary population diversity, resulting in the optimum overall performance of SIPSO. These findings deepen our understanding of swarm intelligence and may shed light on the underlying mechanism of information exchange in natural swarm and flocking behaviors.

[1]  José Neves,et al.  The fully informed particle swarm: simpler, maybe better , 2004, IEEE Transactions on Evolutionary Computation.

[2]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[3]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[4]  Ponnuthurai Nagaratnam Suganthan,et al.  Benchmark Functions for the CEC'2013 Special Session and Competition on Large-Scale Global Optimization , 2008 .

[5]  Jure Leskovec,et al.  Worldwide Buzz: Planetary-Scale Views on an Instant-Messaging Network , 2007, WWW 2008.

[6]  S. Havlin,et al.  Self-similarity of complex networks , 2005, Nature.

[7]  Ulf Grenander,et al.  A stochastic nonlinear model for coordinated bird flocks , 1990 .

[8]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[9]  J. Kennedy,et al.  Population structure and particle swarm performance , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[10]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[11]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[12]  José Neves,et al.  Watch thy neighbor or how the swarm can learn from its environment , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[13]  Attila Szolnoki,et al.  Coevolutionary Games - A Mini Review , 2009, Biosyst..

[14]  Peter Rossmanith,et al.  Simulated Annealing , 2008, Taschenbuch der Algorithmen.

[15]  Changhe Li,et al.  An adaptive learning particle swarm optimizer for function optimization , 2009, 2009 IEEE Congress on Evolutionary Computation.

[16]  Acknowledgments , 2006, Molecular and Cellular Endocrinology.

[17]  Changhe Li,et al.  A Self-Learning Particle Swarm Optimizer for Global Optimization Problems , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[18]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[19]  A. Barabasi,et al.  Scale-free characteristics of random networks: the topology of the world-wide web , 2000 .

[20]  Z. Wang,et al.  The structure and dynamics of multilayer networks , 2014, Physics Reports.

[21]  Marco Tomassini,et al.  Effects of Scale-Free and Small-World Topologies on Binary Coded Self-adaptive CEA , 2006, EvoCOP.

[22]  S. Redner How popular is your paper? An empirical study of the citation distribution , 1998, cond-mat/9804163.

[23]  T. Vicsek,et al.  Hierarchical group dynamics in pigeon flocks , 2010, Nature.

[24]  J. Kennedy,et al.  Neighborhood topologies in fully informed and best-of-neighborhood particle swarms , 2003, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[25]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[26]  R. Eberhart,et al.  Fuzzy adaptive particle swarm optimization , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[27]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[28]  James Kennedy,et al.  Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[29]  Lian Wen,et al.  Software Engineering and Scale-Free Networks , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[30]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[31]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[32]  Alessandro Vespignani,et al.  Large-scale topological and dynamical properties of the Internet. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  G. Cecchi,et al.  Scale-free brain functional networks. , 2003, Physical review letters.

[34]  Jure Leskovec,et al.  Planetary-scale views on a large instant-messaging network , 2008, WWW.

[35]  Kathryn A. Dowsland,et al.  Simulated Annealing , 1989, Encyclopedia of GIS.

[36]  Jun Zhang,et al.  Adaptive Particle Swarm Optimization , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[37]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[38]  Robert L. Stewart,et al.  An analysis of the effects of population structure on scalable multiobjective optimization problems , 2007, GECCO '07.

[39]  Kalyanmoy Deb,et al.  Self-Adaptive Genetic Algorithms with Simulated Binary Crossover , 2001, Evolutionary Computation.

[40]  Rui Mendes,et al.  Neighborhood topologies in fully informed and best-of-neighborhood particle swarms , 2006 .

[41]  Andrea Gasparri,et al.  A spatially structured genetic algorithm for multi-robot localization , 2009, Intell. Serv. Robotics.

[42]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[43]  Huawei Shen,et al.  Covariance, correlation matrix, and the multiscale community structure of networks. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Andrea Gasparri,et al.  A Spatially Structured Genetic Algorithm over Complex Networks for Mobile Robot Localisation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[45]  Zhihai Rong,et al.  Diversity of reproduction time scale promotes cooperation in spatial prisoner's dilemma games. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  I. Couzin,et al.  “Leading According to Need” in Self‐Organizing Groups , 2009, The American Naturalist.

[47]  I. Couzin,et al.  Effective leadership and decision-making in animal groups on the move , 2005, Nature.

[48]  A. Czirók,et al.  Collective Motion , 1999, physics/9902023.

[49]  Wen-Bo Du,et al.  Particle Swarm Optimization with Scale-Free Interactions , 2014, PloS one.

[50]  Shi Zhou,et al.  The rich-club phenomenon in the Internet topology , 2003, IEEE Communications Letters.