Four-dimensional multi-inkdot finite automata

During the past about thirty-five years, many automata on a two- or three-dimensional input tape have been proposed and a lot of properties of such automata have been obtained. On the other hand, we think that recently, due to the advances in computer animation, motion image processing, and so forth, it is very useful for analyzing computational complexity of multi-dimensional information processing to explicate the properties of four-dimensional automata, i.e., three-dimensional automata with the time axis. In this paper, we propose a four-dimensional multi-inkdot finite automaton and mainly investigate its recognizability of four-dimensional connected pictures. Moreover, we briefly investigate some basic accepting powers of four-dimensional multi-inkdot finite automata.

[1]  Anupam Shah Pushdown automata on arrays , 1981, Inf. Sci..

[2]  Juraj Hromkovic On the Power of Alternation in Automata Theory , 1985, J. Comput. Syst. Sci..

[3]  Andrzej Szepietowski On three-way two-dimensional multicounter automata , 1991, Inf. Sci..

[4]  井上 克司,et al.  A Note on Three-Way Two-Dimensional Alternating Turing Machines , 1987 .

[5]  Andrew T. Smith,et al.  Visual detection of motion , 1994 .

[6]  Katsushi Inoue,et al.  A Note on Two-Dimensional Finite Automata , 1978, Inf. Process. Lett..

[7]  Katsushi Inoue,et al.  Some properties of two-dimensional on-line tessellation acceptors , 1977, Inf. Sci..

[8]  F. I. Sidky,et al.  Fully invariant, characteristic, and S -fuzzy subgroups , 1991 .

[9]  Azriel Rosenfeld,et al.  Parallel / Sequential Array Automata , 1973, Inf. Process. Lett..

[10]  Katsushi Inoue,et al.  A note on three-way two-dimensional alternating Turing machines , 1988, Inf. Sci..

[11]  Katsushi Inoue,et al.  A note on three-dimensional finite automata , 1982, Inf. Sci..

[12]  K. N. King,et al.  Alternating Multihead Finite Automata , 1988, Theor. Comput. Sci..

[13]  Pascal Michel,et al.  A Survey of Space Complexity , 1992, Theor. Comput. Sci..

[14]  Katsushi Inoue,et al.  Two-Dimensional Alternating Turing Machines with Only Universal States , 1982, Inf. Control..

[15]  Desh Ranjan,et al.  Space Bounded Computations: Review and New Separation Results , 1991, Theor. Comput. Sci..

[16]  Katsushi Inoue,et al.  Complexity of Acceptance Problems for Two-Dimensional Automata , 1989, A Perspective in Theoretical Computer Science.

[17]  Makoto Sakamoto,et al.  Three-dimensional multiinkdot automata , 2004, Artificial Life and Robotics.

[18]  Richard J. Lipton,et al.  Alternating Pushdown Automata (Preliminary Report) , 1978, FOCS.

[19]  Makoto Sakamoto,et al.  Remarks on the recognizability of topological components by three-dimensional automata , 2008, Artificial Life and Robotics.

[20]  Walter L. Ruzzo,et al.  Tree-size bounded alternation(Extended Abstract) , 1979, J. Comput. Syst. Sci..

[21]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[22]  King-Sun Fu,et al.  A parallel thinning algorithm for 3-D pictures , 1981 .

[23]  Jeffrey D. Ullman,et al.  Some Results on Tape-Bounded Turing Machines , 1969, JACM.

[24]  Anupam N. Shah Pebble automata on arrays , 1974, Comput. Graph. Image Process..

[25]  Steven S. Beauchemin,et al.  The computation of optical flow , 1995, CSUR.

[26]  Katsushi Inoue,et al.  Two-Dimensional Multipass On-Line Tessellation Acceptors , 1979, Inf. Control..

[27]  Katsushi Inoue,et al.  A Relationship Between Nondeterministic Turing Machines and 1-Inkdot Turing Machines with Small Space , 1992, Inf. Process. Lett..

[28]  森田 憲一 COMPUTATIONAL COMPLEXITY IN ONE- AND TWO- DIMENSIONAL TAPE AUTOMATA , 1978 .

[29]  Katsushi Inoue,et al.  Three-way tape-bounded two-dimensional turing machines , 1979, Inf. Sci..

[30]  Ivan Hal Sudborough,et al.  Efficient algorithms for path system problems and applications to alternating and time-space complexity classes , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[31]  Katsushi Inoue,et al.  A survey of two-dimensional automata theory , 1991, Inf. Sci..

[32]  K. N. King Measures of parallelism in alternating computation trees (Extended Abstract) , 1981, STOC '81.

[33]  Viliam Geffert,et al.  Nondeterministic Computations in Sublogarithmic Space and Space Constructibility , 1990, SIAM J. Comput..

[34]  Akira Nakamura,et al.  Detection of interlocking components in three-dimensional digital pictures , 1986, Inf. Sci..

[35]  Makoto Sakamoto,et al.  A note on three-dimensional alternating Turing machines with space smaller than log m , 1993, Inf. Sci..

[36]  William R. Sherman,et al.  Understanding Virtual RealityInterface, Application, and Design , 2002, Presence: Teleoperators & Virtual Environments.

[37]  Katsushi Inoue,et al.  The Effect of Inkdots for Two-Dimensional Automata , 1995, Int. J. Pattern Recognit. Artif. Intell..

[38]  Steven K. Feiner,et al.  Computer graphics: principles and practice (2nd ed.) , 1990 .

[39]  Andrzej Szepietowski On space functions constructed by two-dimensional turing machines , 1992, Inf. Sci..

[40]  Katsushi Inoue,et al.  A Note on Bottom-Up Pyramid Acceptors , 1979, Inf. Process. Lett..

[41]  Ling Li,et al.  Human skeleton proportions from monocular data , 2006 .

[42]  Katsushi Inoue,et al.  Three-way two-dimensional multicounter automata , 1979, Inf. Sci..

[43]  T. Makino,et al.  Three-dimensional multi-inkdot automata , 2005 .

[44]  Azriel Rosenfeld,et al.  Picture languages: Formal models for picture recognition , 1979 .

[45]  Andrzej Szepietowski There are no Fully Space Constructible Functions Between log log n and log n , 1987, Inf. Process. Lett..

[46]  Akira Nakamura Three-dimensional connected pictures are not recognizable by finite-state acceptors , 1992, Inf. Sci..

[47]  Makoto SAKAMOTO,et al.  A Note on Four-Dimensional Finite Automata , 2004 .

[48]  Akira Nakamura,et al.  On the Recognition of Properties of Three-Dimensional Pictures , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Katsushi Inoue,et al.  Connected pictures are not recognizable by deterministic two-dimensional on-line tessellation acceptors , 1984, Comput. Vis. Graph. Image Process..

[50]  Katsushi Inoue,et al.  Two-Dimensional Alternating Turing Machines , 1983, Theor. Comput. Sci..

[51]  Oscar H. Ibarra,et al.  Some results concerning automata on two-dimensional tapes , 1974 .

[52]  Wolfgang J. Paul,et al.  On alternation , 1980, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).