A note on large Cayley graphs of diameter two and given degree

For a variety of infinite sets of positive integers d related to odd prime powers we describe a simple construction of Cayley graphs of diameter two and given degree d which have order close to d^2/2.

[1]  Wieb Bosma,et al.  Computational Algebra and Number Theory , 1995 .

[2]  Hans Rohrbach Anwendung eines Satzes der additiven Zahlentheorie auf eine gruppentheoretische Frage , 1937 .

[3]  Marcel Herzog,et al.  ON REGULAR BASES OF FINITE GROUPS , 1996 .

[4]  Arieh Lev,et al.  On H-Bases and H-Decompositions of the Finite Solvable and Alternating Groups , 1994 .

[5]  Paul R. Hafner Large Cayley Graphs and Digraphs with Small Degree and Diameter , 1995 .

[6]  Frank Thomson Leighton,et al.  Applying the Classification Theorem for Finite Simple Groups to Minimize Pin Count in Uniform Permutation Architectures , 1988, AWOC.

[7]  Michael J. Dinneen,et al.  New results for the degree/diameter problem , 1994, Networks.

[8]  Jana Siagiová,et al.  A Note on the McKay-Miller-Sira'n Graphs , 2001, J. Comb. Theory, Ser. B.

[9]  Randall Dougherty,et al.  The Degree-Diameter Problem for Several Varieties of Cayley Graphs I: The Abelian Case , 2004, SIAM J. Discret. Math..

[10]  J. Šiagiová A Moore-like bound for graphs of diameter 2 and given degree, obtained as abelian lifts of dipoles. , 2002 .

[11]  Alan J. Hoffman,et al.  On Moore Graphs with Diameters 2 and 3 , 1960, IBM J. Res. Dev..

[12]  Brendan D. McKay,et al.  A Note on Large Graphs of Diameter Two and Given Maximum Degree, , 1998, J. Comb. Theory, Ser. B.

[13]  W. G. Brown On Graphs that do not Contain a Thomsen Graph , 1966, Canadian Mathematical Bulletin.

[14]  Gady Kozma,et al.  Bases and decomposition numbers of finite groups , 1992 .

[15]  Hans Rohrbach Ein Beitrag zur additiven Zahlentheorie , 1937 .

[16]  J. A.,et al.  On Moore Graphs with Diameters 2 and 3 , 2022 .