A note on large Cayley graphs of diameter two and given degree
暂无分享,去创建一个
[1] Wieb Bosma,et al. Computational Algebra and Number Theory , 1995 .
[2] Hans Rohrbach. Anwendung eines Satzes der additiven Zahlentheorie auf eine gruppentheoretische Frage , 1937 .
[3] Marcel Herzog,et al. ON REGULAR BASES OF FINITE GROUPS , 1996 .
[4] Arieh Lev,et al. On H-Bases and H-Decompositions of the Finite Solvable and Alternating Groups , 1994 .
[5] Paul R. Hafner. Large Cayley Graphs and Digraphs with Small Degree and Diameter , 1995 .
[6] Frank Thomson Leighton,et al. Applying the Classification Theorem for Finite Simple Groups to Minimize Pin Count in Uniform Permutation Architectures , 1988, AWOC.
[7] Michael J. Dinneen,et al. New results for the degree/diameter problem , 1994, Networks.
[8] Jana Siagiová,et al. A Note on the McKay-Miller-Sira'n Graphs , 2001, J. Comb. Theory, Ser. B.
[9] Randall Dougherty,et al. The Degree-Diameter Problem for Several Varieties of Cayley Graphs I: The Abelian Case , 2004, SIAM J. Discret. Math..
[10] J. Šiagiová. A Moore-like bound for graphs of diameter 2 and given degree, obtained as abelian lifts of dipoles. , 2002 .
[11] Alan J. Hoffman,et al. On Moore Graphs with Diameters 2 and 3 , 1960, IBM J. Res. Dev..
[12] Brendan D. McKay,et al. A Note on Large Graphs of Diameter Two and Given Maximum Degree, , 1998, J. Comb. Theory, Ser. B.
[13] W. G. Brown. On Graphs that do not Contain a Thomsen Graph , 1966, Canadian Mathematical Bulletin.
[14] Gady Kozma,et al. Bases and decomposition numbers of finite groups , 1992 .
[15] Hans Rohrbach. Ein Beitrag zur additiven Zahlentheorie , 1937 .
[16] J. A.,et al. On Moore Graphs with Diameters 2 and 3 , 2022 .