Smooth anisotropic sources with application to three-dimensional surface mesh generation
暂无分享,去创建一个
Eric L. Mestreau | Romain Aubry | S. Dey | Kaan Karamete | R. Aubry | E. Mestreau | K. Karamete | S. Dey
[1] Eric L. Mestreau,et al. A robust conforming NURBS tessellation for industrial applications based on a mesh generation approach , 2015, Comput. Aided Des..
[2] Dimitri J. Mavriplis,et al. Revisiting the Least-squares Procedure for Gradient Reconstruction on Unstructured Meshes , 2003 .
[3] James Demmel,et al. Accurate Singular Values of Bidiagonal Matrices , 1990, SIAM J. Sci. Comput..
[4] Frédéric Hecht,et al. Anisotropic unstructured mesh adaption for flow simulations , 1997 .
[5] J. Peiro,et al. Adaptive remeshing for three-dimensional compressible flow computations , 1992 .
[6] Paul-Louis George,et al. Génération automatique de maillages : applications aux méthodes d'éléments finis , 1991 .
[7] Saikat Dey,et al. A three dimensional parametric mesher , 2013 .
[8] Rainald Löhner,et al. Linear Sources for Mesh Generation , 2013, SIAM J. Sci. Comput..
[9] Saikat Dey,et al. A three-dimensional parametric mesher with surface boundary-layer capability , 2014, J. Comput. Phys..
[10] Frédéric Alauzet,et al. Aligned Metric-based Anisotropic Solution Adaptive Mesh Generation , 2014 .
[11] Frédéric Alauzet,et al. Size gradation control of anisotropic meshes , 2010 .
[12] Marco Fossati,et al. Improved transient-fixed-point mesh adaptation using orthogonality-preserving metric intersection , 2011 .
[13] J. Weickert,et al. Visualization and Processing of Tensor Fields (Mathematics and Visualization) , 2005 .
[14] R. Löhner,et al. Applied Computational Fluid Dynamics Techniques: An Introduction Based on Finite Element Methods , 2001 .
[15] Houman Borouchaki,et al. Metric tensor recovery for adaptive meshing , 2017, Math. Comput. Simul..
[16] François Guibault,et al. Constructing Anisotropic Geometric Metrics using Octrees and Skeletons , 2003, IMR.
[17] Michael J. Aftosmis,et al. Robust and efficient Cartesian mesh generation for component-based geometry , 1997 .
[18] Joachim Kopp. EFFICIENT NUMERICAL DIAGONALIZATION OF HERMITIAN 3 × 3 MATRICES , 2006 .
[19] A. Munjiza,et al. NBS contact detection algorithm for bodies of similar size , 1998 .
[20] Frédéric Hecht,et al. MESH GRADATION CONTROL , 1998 .
[21] Guillaume Houzeaux,et al. A Surface Remeshing Approach , 2010 .
[22] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[23] Rainald Lhner. Applied Computational Fluid Dynamics Techniques , 2008 .
[24] Adrien Loseille,et al. On 3D Anisotropic Local Remeshing for Surface, Volume and Boundary Layers , 2009, IMR.
[25] Vladlen Koltun. Almost tight upper bounds for lower envelopes in higher dimensions , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[26] Bui Tuong Phong. Illumination for computer generated pictures , 1975, Commun. ACM.
[27] Pascal J. Frey,et al. About Surface Remeshing , 2000, IMR.
[28] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[29] Hans Hagen,et al. Visualization and Processing of Tensor Fields , 2014 .
[30] S. Pirzadeh. Advanced Unstructured Grid Generation for Complex Aerodynamic Applications , 2013 .
[31] R. Löhner,et al. Unstructured Navier–Stokes grid generation at corners and ridges , 2003 .
[32] Jochen Wild. 3D Anisotropic Delaunay Meshing for Ideal Interfacing to Block-Unstructured Mixed Meshes Using a Sparse Octree for Metric Size Propagation , 2012 .
[33] C. Hirsch,et al. Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.
[34] Alex M. Andrew,et al. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .
[35] Shahyar Pirzadeh,et al. Advanced Unstructured Grid Generation for Complex Aerodynamics Applications , 2008 .
[36] James Demmel,et al. Jacobi's Method is More Accurate than QR , 1989, SIAM J. Matrix Anal. Appl..
[37] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[38] Beresford N. Parlett,et al. The Symmetric Eigenvalue Problem (Classics in Applied Mathematics, Number 20) , 1999 .
[39] Frédéric Alauzet,et al. High-order sonic boom modeling based on adaptive methods , 2010, J. Comput. Phys..
[40] Andrew R. Crowell,et al. Static and Dynamic CFD Analysis of a Generic Swept Wing UCAV , 2015 .