Smooth anisotropic sources with application to three-dimensional surface mesh generation

Isotropic sources are extended to take anisotropy into account in order to obtain a smooth anisotropic sizing field for anisotropic mesh generation. Different types of anisotropic sources are described to represent boundary layers on surfaces and in volume that guarantee a smooth anisotropic field. This allows to us resolve multiple boundary layer intersections properly and naturally provides a smooth transition between the anisotropic boundary layer sizing and the isotropic region. Furthermore, the interaction between a smooth anisotropic sizing field and curvature is studied, and estimates of the tangential size spacing are provided for first and second order approximation of the geometry to ensure smoothness of the sizing field. It is also shown that, in order to get a smooth size variation, volumetric and surface meshing can not be decoupled. The filtering of the sources in order to obtain a computationally efficient method is described. Numerical examples demonstrate our method.

[1]  Eric L. Mestreau,et al.  A robust conforming NURBS tessellation for industrial applications based on a mesh generation approach , 2015, Comput. Aided Des..

[2]  Dimitri J. Mavriplis,et al.  Revisiting the Least-squares Procedure for Gradient Reconstruction on Unstructured Meshes , 2003 .

[3]  James Demmel,et al.  Accurate Singular Values of Bidiagonal Matrices , 1990, SIAM J. Sci. Comput..

[4]  Frédéric Hecht,et al.  Anisotropic unstructured mesh adaption for flow simulations , 1997 .

[5]  J. Peiro,et al.  Adaptive remeshing for three-dimensional compressible flow computations , 1992 .

[6]  Paul-Louis George,et al.  Génération automatique de maillages : applications aux méthodes d'éléments finis , 1991 .

[7]  Saikat Dey,et al.  A three dimensional parametric mesher , 2013 .

[8]  Rainald Löhner,et al.  Linear Sources for Mesh Generation , 2013, SIAM J. Sci. Comput..

[9]  Saikat Dey,et al.  A three-dimensional parametric mesher with surface boundary-layer capability , 2014, J. Comput. Phys..

[10]  Frédéric Alauzet,et al.  Aligned Metric-based Anisotropic Solution Adaptive Mesh Generation , 2014 .

[11]  Frédéric Alauzet,et al.  Size gradation control of anisotropic meshes , 2010 .

[12]  Marco Fossati,et al.  Improved transient-fixed-point mesh adaptation using orthogonality-preserving metric intersection , 2011 .

[13]  J. Weickert,et al.  Visualization and Processing of Tensor Fields (Mathematics and Visualization) , 2005 .

[14]  R. Löhner,et al.  Applied Computational Fluid Dynamics Techniques: An Introduction Based on Finite Element Methods , 2001 .

[15]  Houman Borouchaki,et al.  Metric tensor recovery for adaptive meshing , 2017, Math. Comput. Simul..

[16]  François Guibault,et al.  Constructing Anisotropic Geometric Metrics using Octrees and Skeletons , 2003, IMR.

[17]  Michael J. Aftosmis,et al.  Robust and efficient Cartesian mesh generation for component-based geometry , 1997 .

[18]  Joachim Kopp EFFICIENT NUMERICAL DIAGONALIZATION OF HERMITIAN 3 × 3 MATRICES , 2006 .

[19]  A. Munjiza,et al.  NBS contact detection algorithm for bodies of similar size , 1998 .

[20]  Frédéric Hecht,et al.  MESH GRADATION CONTROL , 1998 .

[21]  Guillaume Houzeaux,et al.  A Surface Remeshing Approach , 2010 .

[22]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[23]  Rainald Lhner Applied Computational Fluid Dynamics Techniques , 2008 .

[24]  Adrien Loseille,et al.  On 3D Anisotropic Local Remeshing for Surface, Volume and Boundary Layers , 2009, IMR.

[25]  Vladlen Koltun Almost tight upper bounds for lower envelopes in higher dimensions , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[26]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[27]  Pascal J. Frey,et al.  About Surface Remeshing , 2000, IMR.

[28]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[29]  Hans Hagen,et al.  Visualization and Processing of Tensor Fields , 2014 .

[30]  S. Pirzadeh Advanced Unstructured Grid Generation for Complex Aerodynamic Applications , 2013 .

[31]  R. Löhner,et al.  Unstructured Navier–Stokes grid generation at corners and ridges , 2003 .

[32]  Jochen Wild 3D Anisotropic Delaunay Meshing for Ideal Interfacing to Block-Unstructured Mixed Meshes Using a Sparse Octree for Metric Size Propagation , 2012 .

[33]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[34]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[35]  Shahyar Pirzadeh,et al.  Advanced Unstructured Grid Generation for Complex Aerodynamics Applications , 2008 .

[36]  James Demmel,et al.  Jacobi's Method is More Accurate than QR , 1989, SIAM J. Matrix Anal. Appl..

[37]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[38]  Beresford N. Parlett,et al.  The Symmetric Eigenvalue Problem (Classics in Applied Mathematics, Number 20) , 1999 .

[39]  Frédéric Alauzet,et al.  High-order sonic boom modeling based on adaptive methods , 2010, J. Comput. Phys..

[40]  Andrew R. Crowell,et al.  Static and Dynamic CFD Analysis of a Generic Swept Wing UCAV , 2015 .