Nanomaterials and films for polymer electrolyte membrane fuel cells and solid oxide cells by flame spray pyrolysis

[1]  R. Maric,et al.  Advanced Electrodes for Electrochemical Energy Storage and Conversion Devices Fabricated by Reactive Spray Deposition Technology , 2021, Electrochemistry Communications.

[2]  H. Kosaka,et al.  Structural Characterization of Ceria-Supported Pt Nanoparticles by Flame-Assisted Spray Pyrolysis Using a Burner Diffusion Flame , 2021, Energy & Fuels.

[3]  N. Brandon,et al.  Designing the next generation of proton-exchange membrane fuel cells , 2021, Nature.

[4]  Elisabetta Comini,et al.  Solid oxide fuel cell: Decade of progress, future perspectives and challenges , 2021, International Journal of Hydrogen Energy.

[5]  K. Friedrich,et al.  Review on mechanisms and recovery procedures for reversible performance losses in polymer electrolyte membrane fuel cells , 2021 .

[6]  M. Solakidou,et al.  Double-Nozzle Flame Spray Pyrolysis as a Potent Technology to Engineer Noble Metal-TiO2 Nanophotocatalysts for Efficient H2 Production , 2021, Energies.

[7]  M. Mohammadi,et al.  Fundamentals and recent applications of catalyst synthesis using flame aerosol technology , 2021, Chemical Engineering Journal.

[8]  N. Yan,et al.  High-temperature flame spray pyrolysis induced stabilization of Pt single-atom catalysts , 2021 .

[9]  S. Pokhrel,et al.  Flame-made Particles for Sensors, Catalysis, and Energy Storage Applications , 2020, Energy & fuels : an American Chemical Society journal.

[10]  R. Maric,et al.  Nano-sized Pt–NbOx supported on TiN as cost-effective electrocatalyst for oxygen reduction reaction , 2020, Materials for Renewable and Sustainable Energy.

[11]  A. Tricoli,et al.  Flame spray pyrolysis for the one-step fabrication of transition metal oxide films: Recent progress in electrochemical and photoelectrochemical water splitting , 2020 .

[12]  S. Pokhrel,et al.  The gas-phase formation of tin dioxide nanoparticles in single droplet combustion and flame spray pyrolysis , 2020, Combustion and flame.

[13]  J. Shui,et al.  Fe-N-C catalysts for PEMFC: Progress towards the commercial application under DOE reference , 2019, Journal of Energy Chemistry.

[14]  R. Maric,et al.  Characterization and evaluation of Fe–N–C electrocatalysts for oxygen reduction directly synthesized by reactive spray deposition technology , 2019, Journal of Materials Science.

[15]  Yanjie Hu,et al.  In-situ synthesized surface N-doped Pt/TiO2 via flame spray pyrolysis with enhanced thermal stability for CO catalytic oxidation , 2019, Applied Surface Science.

[16]  K. Ayers,et al.  Nano-size IrOx catalyst of high activity and stability in PEM water electrolyzer with ultra-low iridium loading , 2018, Applied Catalysis B: Environmental.

[17]  Ye Tian,et al.  Engineering surface defects and metal–support interactions on Pt/TiO2(B) nanobelts to boost the catalytic oxidation of CO , 2018 .

[18]  P. Su,et al.  Nanomaterials and technologies for low temperature solid oxide fuel cells : Recent advances, challenges and opportunities , 2018 .

[19]  Feroza Begum,et al.  Nanomaterials for solid oxide fuel cells: A review , 2018 .

[20]  Weiliang Wang,et al.  Evaluation of perovskite catalysts prepared by flame spray pyrolysis for three-way catalyst activity under simulated gasoline exhaust feeds , 2017, Catalysis Today.

[21]  Fellipe Sartori da Silva,et al.  Novel materials for solid oxide fuel cell technologies: A literature review , 2017 .

[22]  K. Andreas Friedrich,et al.  Investigation of activity and stability of carbon supported oxynitrides with ultra-low Pt concentration as ORR catalyst for PEM fuel cells , 2017, Journal of Electroanalytical Chemistry.

[23]  Xiaochen Shen,et al.  A review of Pt-based electrocatalysts for oxygen reduction reaction , 2017 .

[24]  R. Maric,et al.  Strategies to mitigate Pt dissolution in low Pt loading proton exchange membrane fuel cell: I. A gradient Pt particle size design , 2017 .

[25]  P. Dahl,et al.  Flame spray pyrolysis of tin oxide-based Pt catalysts for PEM fuel cell applications , 2017 .

[26]  G. Jodhani Flame Spray Pyrolysis Processing to Produce Metastable Phases of Metal Oxides , 2017 .

[27]  R. Maric,et al.  A study on the effect of selected process parameters in a jet diffusion flame for Pt nanoparticle formation , 2017, Journal of Materials Science.

[28]  S. Pratsinis,et al.  Process Design for Size-Controlled Flame Spray Synthesis of Li4Ti5O12 and Electrochemical Performance , 2017 .

[29]  Dustin Banham,et al.  Current Status and Future Development of Catalyst Materials and Catalyst Layers for Proton Exchange Membrane Fuel Cells: An Industrial Perspective , 2017, ACS Energy Letters.

[30]  Chang-jiu Li,et al.  Relationship Between Designed Three-Dimensional YSZ Electrolyte Surface Area and Performance of Solution-Precursor Plasma-Sprayed La0.8Sr0.2MnO3−δ Cathodes , 2016, Journal of Thermal Spray Technology.

[31]  Haifeng Lv,et al.  Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction , 2016 .

[32]  R. Maric,et al.  Characterization and Performance of Proton Conducting Solid Oxide Fuel Cells Manufactured Using Reactive Spray Deposition Technology , 2016 .

[33]  S. Pratsinis,et al.  Synthesis of catalytic materials in flames: opportunities and challenges. , 2016, Chemical Society reviews.

[34]  Chang-jiu Li,et al.  Thermally sprayed high-performance porous metal-supported solid oxide fuel cells with nanostructured La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes , 2016 .

[35]  K. Ayers,et al.  Pathways to ultra-low platinum group metal catalyst loading in proton exchange membrane electrolyzers , 2016 .

[36]  Anusorn Kongkanand,et al.  The Priority and Challenge of High-Power Performance of Low-Platinum Proton-Exchange Membrane Fuel Cells. , 2016, The journal of physical chemistry letters.

[37]  L. Mädler,et al.  The Role of Microexplosions in Flame Spray Synthesis for Homogeneous Nanopowders from Low-cost Metal Precursors , 2016 .

[38]  S. Hwang,et al.  A Generic Wet Impregnation Method for Preparing Substrate-Supported Platinum Group Metal and Alloy Nanoparticles with Controlled Particle Morphology. , 2016, Nano letters.

[39]  R. Maric,et al.  A Study on Reactive Spray Deposition Technology Processing Parameters in the Context of Pt Nanoparticle Formation , 2015, Journal of Thermal Spray Technology.

[40]  R. Maric,et al.  Application of a Coated Film Catalyst Layer Model to a High Temperature Polymer Electrolyte Membrane Fuel Cell with Low Catalyst Loading Produced by Reactive Spray Deposition Technology , 2015 .

[41]  R. Maric,et al.  The effect of binder content on the performance of a high temperature polymer electrolyte membrane fuel cell produced with reactive spray deposition technology , 2015 .

[42]  Jochen A. H. Dreyer,et al.  Preferential oxidation of carbon monoxide over Pt–FeOx/CeO2 synthesized by two-nozzle flame spray pyrolysis , 2015 .

[43]  Younan Xia,et al.  Toward continuous and scalable production of colloidal nanocrystals by switching from batch to droplet reactors. , 2015, Chemical Society reviews.

[44]  T. Graule,et al.  Flame Spray Synthesis of BaZr0.8Y0.2O3–δ Electrolyte Nanopowders for Intermediate Temperature Proton Conducting Fuel Cells , 2015 .

[45]  R. Maric,et al.  Influence of the ionomer/carbon ratio for low-Pt loading catalyst layer prepared by reactive spray deposition technology , 2015 .

[46]  C. B. Carter,et al.  Flame-based processing as a practical approach for manufacturing hydrogen evolution electrodes , 2014 .

[47]  G. Tsekouras,et al.  Electronic Conductivity Enhancement of (La,Sr)TiO3 with Nb‐Doping on B‐Site , 2014 .

[48]  Zachary N. Coker,et al.  Flame aerosol synthesis of carbon-supported Pt–Ru catalysts for a fuel cell electrode , 2014 .

[49]  S. Pratsinis,et al.  Scale-up of Nanoparticle Synthesis by Flame Spray Pyrolysis: The High-Temperature Particle Residence Time , 2014 .

[50]  Yanjie Hu,et al.  SnO2 nanorod@TiO2 hybrid material for dye-sensitized solar cells , 2014 .

[51]  Dongwook Shin,et al.  Preparation of nano-crystalline strontium-doped lanthanum manganate (LSM) powder and porous film by aerosol flame deposition , 2014 .

[52]  R. Maric,et al.  Synthesis of nano-Pt onto ceria support as catalyst for water–gas shift reaction by Reactive Spray Deposition Technology , 2014 .

[53]  P. Novák,et al.  Size controlled CuO nanoparticles for Li-ion batteries , 2013 .

[54]  C. B. Carter,et al.  Flame-Based Synthesis of Core-Shell Structures Using Pd-Ru and Pd Cores , 2013 .

[55]  C. B. Carter,et al.  Catalyst nanoscale assembly from the vapor phase on corrosion resistant supports , 2013 .

[56]  A. Heinzel,et al.  High-capacity cathodes for lithium-ion batteries from nanostructured LiFePO4 synthesized by highly-flexible and scalable flame spray pyrolysis , 2012 .

[57]  Dongwook Shin,et al.  Effect of atomization methods on the size and morphology of Gd0.1Ce0.9O2−δ powder synthesized by aerosol flame synthesis , 2012 .

[58]  R. Maric,et al.  Supported and unsupported platinum catalysts prepared by a one-step dry deposition method and their oxygen reduction reactivity in acidic media , 2012, Journal of Materials Science.

[59]  Qianpu Wang,et al.  Mathematical Modelling of Flow and Heat/Mass Transfer During Reactive Spraying Deposition Technology (RSDT) Process for High Temperature Fuel Cells , 2012 .

[60]  S. Pratsinis,et al.  Flame Aerosol Synthesis of Metal Oxide Catalysts with Unprecedented Structural and Catalytic Properties , 2011 .

[61]  Dongwook Shin,et al.  Characterization of La(0.8)Sr(0.2)MnO(3 +/-delta) nanopowders synthesized by aerosol flame synthesis for SOFC cathode. , 2011, Journal of Nanoscience and Nanotechnology.

[62]  H. Hahn,et al.  Flame spray synthesis of nano lanthanum strontium manganite for solid oxide fuel cell applications , 2011 .

[63]  L. Gauckler,et al.  Flame spray deposition of nanocrystalline dense Ce0.8Gd0.2O2−δ thin films : deposition mechanism and microstructural characterization , 2011 .

[64]  L. Mädler,et al.  Dopant-free, polymorphic design of TiO2 nanocrystals by flame aerosol synthesis , 2011 .

[65]  S. Pratsinis,et al.  Effect of solvent composition on oxide morphology during flame spray pyrolysis of metal nitrates. , 2011, Physical chemistry chemical physics : PCCP.

[66]  R. Maric,et al.  Flame-Based Technologies and Reactive Spray Deposition Technology for Low-Temperature Solid Oxide Fuel Cells: Technical and Economic Aspects , 2011 .

[67]  C. Kübel,et al.  Metastable phase formation during flame spray pyrolysis of ZrO2(Y2O3)–Al2O3 nanoparticles , 2011 .

[68]  L. Gauckler,et al.  Properties of Flame Sprayed Ce0.8Gd0.2O1.9‐δ Electrolyte Thin Films , 2011 .

[69]  S. Pratsinis,et al.  Uniform nanoparticles by flame-assisted spray pyrolysis (FASP) of low cost precursors , 2011, Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology.

[70]  Janos Vörös,et al.  Non‐Toxic Dry‐Coated Nanosilver for Plasmonic Biosensors , 2010, Advanced functional materials.

[71]  L. Gauckler,et al.  Flame spray deposition of La0.6Sr0.4CoO3−δ thin films: Microstructural characterization, electrochemical performance and degradation , 2010 .

[72]  R. Maric,et al.  Reactive Spray Deposition Technology - An one-step deposition technique for Solid Oxide Fuel Cell barrier layers , 2010 .

[73]  S. Assabumrungrat,et al.  Fabrication of La0.8Sr0.2CrO3‐based Perovskite Film via Flame‐Assisted Vapor Deposition for H2 Production by Reforming , 2010 .

[74]  T. Graule,et al.  On the synthesis and performance of flame-made nanoscale La0.6Sr0.4CoO3−δ and its influence on the application as an intermediate temperature solid oxide fuel cell cathode , 2010 .

[75]  L. Mädler,et al.  Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication. , 2010, Nanoscale.

[76]  Y. Shim,et al.  A one-step continuous synthesis of carbon-supported Pt catalysts using a flame for the preparation of the fuel electrode. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[77]  T. Graule,et al.  Flame Spray Synthesis of Nanoscale La0.6Sr0.4Co0.2Fe0.8O3–δ and Ba0.5Sr0.5Co0.8Fe0.2O3–δ as Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells , 2010 .

[78]  T. Graule,et al.  Effect of graphite pore former on oxygen electrodes prepared with La0.6Sr0.4CoO3−δ nanoparticles , 2010 .

[79]  B. Popov,et al.  Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications. , 2009, Journal of the American Chemical Society.

[80]  S. Pratsinis,et al.  Blue nano titania made in diffusion flames. , 2009, Physical chemistry chemical physics : PCCP.

[81]  T. Graule,et al.  Flame spray synthesis and characterisation of stabilised ZrO2 and CeO2 electrolyte nanopowders for SOFC applications at intermediate temperatures , 2009 .

[82]  Beat Buesser,et al.  Role of Gas−Aerosol Mixing during in Situ Coating of Flame-Made Titania Particles , 2009 .

[83]  Sotiris E Pratsinis,et al.  In situ coating of flame-made TiO2 particles with nanothin SiO2 films. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[84]  Andreas Hierlemann,et al.  Micropatterning Layers by Flame Aerosol Deposition‐Annealing , 2008 .

[85]  Dongwook Shin,et al.  Synthesis of nano-crystalline Gd0.1Ce0.9O2−x for IT-SOFC by aerosol flame deposition , 2008 .

[86]  Dongwook Shin,et al.  Microstructure and electrical conductivity of NiO–YSZ nano-powder synthesized by aerosol flame deposition , 2008 .

[87]  S. Pratsinis,et al.  One-Step Flame-Synthesis of Carbon-Embedded and -Supported Platinum Clusters , 2008 .

[88]  Sotiris E. Pratsinis,et al.  Flame aerosol synthesis of smart nanostructured materials , 2007 .

[89]  W. Stark,et al.  Sintering Behavior of In Situ Cobalt Oxide-Doped Cerium–Gadolinium Oxide Prepared by Flame Spray Pyrolysis , 2006 .

[90]  L. Mädler,et al.  Two-Nozzle Flame Synthesis of Pt/Ba/Al2O3 for NOx Storage , 2006 .

[91]  Wendelin J. Stark,et al.  Gas phase synthesis of fcc-cobalt nanoparticles , 2006 .

[92]  Nicolae Barsan,et al.  Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO2 nanoparticles , 2006 .

[93]  R. Song,et al.  Synthesis and properties of Ce1−xGdxO2−x/2 solid solution prepared by flame spray pyrolysis , 2006 .

[94]  Ib Chorkendorff,et al.  Mixed Phase Pt-Ru Catalyst for Direct Methanol Fuel Cell Anode by Flame Aerosol Synthesis , 2005 .

[95]  Lutz Mädler,et al.  Independent Control of Metal Cluster and Ceramic Particle Characteristics During One-step Synthesis of Pt/TiO_2 , 2005 .

[96]  L. Gauckler,et al.  Single chamber solid oxide fuel cells with integrated current-collectors , 2005 .

[97]  L. Mädler,et al.  Bismuth Oxide Nanoparticles by Flame Spray Pyrolysis , 2004 .

[98]  B. Steele,et al.  Flame assisted vapour deposition of cathode for solid oxide fuel cells. 1. Microstructure control from processing parameters , 2004 .

[99]  S. Zha,et al.  Novel Nanostructured Electrodes for Solid Oxide Fuel Cells Fabricated by Combustion Chemical Vapor Deposition (CVD) , 2004 .

[100]  W. Carter,et al.  Nanoindentation measurements of combustion CVD Al2O3 and YSZ films , 2003 .

[101]  R. Maric,et al.  Electrolyte Materials for Intermediate Temperature Fuel Cells Produced via Combustion Chemical Vapor Condensation , 2003 .

[102]  A. Boudghene Stambouli,et al.  Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy , 2002 .

[103]  W. Stark,et al.  Flame-made ceria nanoparticles , 2002 .

[104]  Y. Xing,et al.  Flame synthesis of nanopowders via combustion chemical vapor deposition , 2002 .

[105]  Lutz Mädler,et al.  Controlled synthesis of nanostructured particles by flame spray pyrolysis , 2002 .

[106]  Richard M. Laine,et al.  Ultrafine spinel powders by flame spray pyrolysis of a magnesium aluminum double alkoxide , 1996 .

[107]  W. Carter,et al.  Combustion chemical vapor deposition: A novel thin‐film deposition technique , 1993 .

[108]  Mohammad Ali Abdelkareem,et al.  Fuel cell application in the automotive industry and future perspective , 2021 .

[109]  Guanjun Yang,et al.  Application of high velocity oxygen fuel flame (HVOF) spraying to fabrication of La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte for solid oxide fuel cells , 2016 .

[110]  T. Graule,et al.  Effects of Ni doping on the sintering and electrical properties of BaZr0.8Y0.2O3−δ proton conducting electrolyte prepared by Flame Spray Synthesis , 2016 .

[111]  P. Dahl,et al.  Flame Spray Pyrolysis of Electrode Materials for Energy Applications , 2015 .

[112]  R. Maric,et al.  One-Step Deposition of Catalyst Layers for High Temperature Proton Exchange Membrane Fuel Cells (PEMFC) , 2014 .

[113]  T. Rao,et al.  Pilot Plants for Industrial Nanoparticle Production by Flame Spray Pyrolysis , 2011 .

[114]  S. Pratsinis,et al.  Flame Synthesis of Supported Platinum Group Metals for Catalysis and Sensors NOVEL FLAME PROCESSES ALLOW SYNTHESIS OF SUPPORTED PGMs IN A SINGLE STEP , 2009 .

[115]  Dongwook Shin,et al.  Synthesis of yttria-stabilized zirconia film by Aerosol Flame Pyrolysis Deposition , 2008 .

[116]  Dongwook Shin,et al.  Fabrication of NiO/YSZ anode for solid oxide fuel cells by aerosol flame deposition , 2007 .

[117]  Dongwook Shin,et al.  Synthesis of nano-sized gadolinia doped ceria powder by aerosol flame deposition , 2007 .

[118]  J. Schmitt,et al.  Platinum-Catalyzed Polymer Electrolyte Membrane for Fuel Cells , 1999 .