Generalising the Scattered Property of Subspaces

Let V be an r -dimensional $${\mathbb{F}_{{q^n}}}$$ F q n -vector space. We call an $${\mathbb{F}_{q}}$$ F q -subspace U of V h -scattered if U meets the h -dimensional $${\mathbb{F}_{{q^n}}}$$ F q n -subspaces of V in $${\mathbb{F}_{q}}$$ F q -subspaces of dimension at most h . In 2000 Blokhuis and Lavrauw proved that $${\dim_{\mathbb{F}_{q}}}$$ dim F q U ≤ rn /2 when U is 1-scattered. Sub-spaces attaining this bound have been investigated intensively because of their relations with projective two-weight codes and strongly regular graphs. MRD-codes with a maximum idealiser have also been linked to rn /2-dimensional 1-scattered subspaces and to n -dimensional ( r − 1)-scattered subspaces. In this paper we prove the upper bound rn /( h + 1) for the dimension of h -scattered subspaces, h > 1, and construct examples with this dimension. We study their intersection numbers with hyperplanes, introduce a duality relation among them, and study the equivalence problem of the corresponding linear sets.

[1]  Guglielmo Lunardon,et al.  Translation ovoids of orthogonal polar spaces , 2004 .

[2]  Daniele Bartoli,et al.  Maximum Scattered Linear Sets and Complete Caps in Galois Spaces , 2015, Comb..

[3]  Rocco Trombetti,et al.  On kernels and nuclei of rank metric codes , 2016, ArXiv.

[4]  Olga Polverino,et al.  A geometric characterisation of linear k-blocking sets , 2002 .

[5]  Giuseppe Marino,et al.  Classes and equivalence of linear sets in PG(1, qn) , 2016, J. Comb. Theory, Ser. A.

[6]  John Sheekey,et al.  Rank-metric codes, linear sets, and their duality , 2018, Des. Codes Cryptogr..

[7]  B. Huppert Endliche Gruppen I , 1967 .

[8]  Olga Polverino,et al.  Linear sets in finite projective spaces , 2010, Discret. Math..

[9]  Giuseppe Marino,et al.  A Carlitz type result for linearized polynomials , 2018, Ars Math. Contemp..

[10]  Philippe Delsarte,et al.  Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.

[11]  Bence Csajbók,et al.  On the equivalence of linear sets , 2015, Des. Codes Cryptogr..

[12]  Giuseppe Marino,et al.  Maximum scattered linear sets and MRD-codes , 2017, 1701.06831.

[13]  Michel Lavrauw,et al.  Scattered Spaces with Respect to a Spread in PG(n,q) , 2000 .

[14]  Guglielmo Lunardon,et al.  MRD-codes and linear sets , 2017, J. Comb. Theory, Ser. A.

[15]  Michel Lavrauw,et al.  Field reduction and linear sets in finite geometry , 2013, 1310.8522.

[16]  Michel Lavrauw,et al.  Linear (q+1)-fold Blocking Sets in PG(2, q4) , 2000 .

[17]  Beniamino Segre,et al.  Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane , 1964 .

[18]  Olga Polverino,et al.  Fq-linear blocking sets in PG(2,q4) , 2005 .