Parallel Multilevel Schwarz and Block Preconditioners for the Bidomain Parabolic-Parabolic and Parabolic-Elliptic Formulations

The aim of this work is to develop parallel multilevel and block preconditioners for the Bidomain model of electrocardiology. The Bidomain model describes the electrical activity of the heart tissue and consists of a system of two parabolic nonlinear partial differential equations (PDEs) of reaction-diffusion type (PP formulation) or alternatively of a system of a parabolic nonlinear PDE and an elliptic linear PDE (PE formulation). In both formulations, the PDEs are coupled with a system of ordinary differential equations, modeling the cellular membrane ionic currents. The first goal of the present study is to construct, analyze, and numerically test a multilevel additive Schwarz preconditioner for the PE formulation of the Bidomain model, extending previous results obtained for the PP formulation. Optimal convergence rate estimates are established and confirmed by 3D numerical test on Linux clusters. The second goal of the present study is to analyze the scalability of multilevel Schwarz block-diagonal and block-factorized preconditioners for both PP and PE formulations of the Bidomain model and to compare them with multilevel Schwarz coupled preconditioners. The 3D parallel numerical tests show that block preconditioners for the PP formulation are not scalable, while they are scalable for the PE formulation, but less efficient than the coupled preconditioners.

[1]  O. Widlund,et al.  Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions , 1994 .

[2]  Piero Colli Franzone,et al.  Multiscale Modeling for the Bioelectric Activity of the Heart , 2005, SIAM J. Math. Anal..

[3]  Giuseppe Savaré,et al.  Computational electrocardiology: mathematical and numerical modeling , 2006 .

[4]  Gernot Plank,et al.  Solving the Coupled System Improves Computational Efficiency of the Bidomain Equations , 2009, IEEE Transactions on Biomedical Engineering.

[5]  Wanda Krassowska,et al.  Increasing the Computational Efficiency of a Bidomain Model of Defibrillation Using a Time-Dependent Activating Function , 2000, Annals of Biomedical Engineering.

[6]  A. Tveito,et al.  An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. , 2005, Mathematical biosciences.

[7]  P. C. Franzone,et al.  A PARALLEL SOLVER FOR REACTION-DIFFUSION SYSTEMS IN COMPUTATIONAL ELECTROCARDIOLOGY , 2004 .

[8]  W. Krassowska,et al.  Homogenization of syncytial tissues. , 1993, Critical reviews in biomedical engineering.

[9]  Luca F. Pavarino,et al.  A Scalable Newton--Krylov--Schwarz Method for the Bidomain Reaction-Diffusion System , 2009, SIAM J. Sci. Comput..

[10]  Piero Colli Franzone,et al.  COMPUTING CARDIAC RECOVERY MAPS FROM ELECTROGRAMS AND MONOPHASIC ACTION POTENTIALS UNDER HETEROGENEOUS AND ISCHEMIC CONDITIONS , 2010 .

[11]  Valeria Simoncini,et al.  Fast Structured AMG Preconditioning for the Bidomain Model in Electrocardiology , 2011, SIAM J. Sci. Comput..

[12]  P. Hunter,et al.  Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. , 1995, The American journal of physiology.

[13]  Andrew J. Pullan,et al.  Solving the cardiac bidomain equations for discontinuous conductivities , 2006, IEEE Transactions on Biomedical Engineering.

[14]  V. Simoncini,et al.  Efficient algebraic solution of reaction-diffusion systems for the cardiac excitation process , 2002 .

[15]  L. F. Pavarino,et al.  Exploring anodal and cathodal make and break cardiac excitation mechanisms in a 3D anisotropic bidomain model. , 2011, Mathematical biosciences.

[16]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[17]  C. Luo,et al.  A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. , 1991, Circulation research.

[18]  Olof B. Widlund,et al.  Multilevel additive methods for elliptic finite element problems in three dimensions , 2018 .

[19]  A. Tveito,et al.  Multigrid Block Preconditioning for a Coupled System of Partial Differential Equations Modeling the Electrical Activity in the Heart , 2002, Computer methods in biomechanics and biomedical engineering.

[20]  Luca F. Pavarino,et al.  Multilevel Additive Schwarz Preconditioners for the Bidomain Reaction-Diffusion System , 2008, SIAM J. Sci. Comput..

[21]  Luca Gerardo-Giorda,et al.  A model-based block-triangular preconditioner for the Bidomain system in electrocardiology , 2009, J. Comput. Phys..

[22]  Alan Garny,et al.  A numerical guide to the solution of the bi-domain equations of cardiac electrophysiology. , 2010, Progress in biophysics and molecular biology.

[23]  Simone Scacchi,et al.  A multilevel hybrid Newton–Krylov–Schwarz method for the Bidomain model of electrocardiology , 2011 .

[24]  O. Axelsson Iterative solution methods , 1995 .

[25]  Luca F. Pavarino,et al.  DECOUPLED SCHWARZ ALGORITHMS FOR IMPLICIT DISCRETIZATIONS OF NONLINEAR MONODOMAIN AND BIDOMAIN SYSTEMS , 2009 .

[26]  V. Simoncini,et al.  Algebraic multigrid preconditioners for the bidomain reaction--diffusion system , 2009 .

[27]  Olof B. Widlund,et al.  Domain Decomposition Algorithms with Small Overlap , 1992, SIAM J. Sci. Comput..

[28]  A. Tveito,et al.  Numerical solution of the bidomain equations , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  Marc Ethier,et al.  Semi-Implicit Time-Discretization Schemes for the Bidomain Model , 2008, SIAM J. Numer. Anal..

[30]  Xuejun Zhang,et al.  Multilevel Schwarz methods , 1992 .

[31]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[32]  Simone Scacchi,et al.  A hybrid multilevel Schwarz method for the bidomain model , 2008 .

[33]  Luca Gerardo-Giorda,et al.  OPTIMIZED SCHWARZ COUPLING OF BIDOMAIN AND MONODOMAIN MODELS IN ELECTROCARDIOLOGY , 2011 .

[34]  B. Taccardi,et al.  Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models. , 2005, Mathematical biosciences.

[35]  Natalia A. Trayanova,et al.  Computational techniques for solving the bidomain equations in three dimensions , 2002, IEEE Transactions on Biomedical Engineering.

[36]  Xing Cai,et al.  An order optimal solver for the discretized bidomain equations , 2007, Numer. Linear Algebra Appl..

[37]  Rodrigo Weber dos Santos,et al.  Parallel multigrid preconditioner for the cardiac bidomain model , 2004, IEEE Transactions on Biomedical Engineering.

[38]  G Plank,et al.  Solvers for the cardiac bidomain equations. , 2008, Progress in biophysics and molecular biology.

[39]  Jonathan P. Whiteley,et al.  An Efficient Numerical Technique for the Solution of the Monodomain and Bidomain Equations , 2006, IEEE Transactions on Biomedical Engineering.

[40]  Xiao-Chuan Cai,et al.  A fully implicit parallel algorithm for simulating the non‐linear electrical activity of the heart , 2004, Numer. Linear Algebra Appl..