Global weak solutions for a parabolic system modeling a one-dimensional miscible flow in porous media
暂无分享,去创建一个
[1] T. Gallouët,et al. Non-linear elliptic and parabolic equations involving measure data , 1989 .
[2] Analysis of a one-dimensional model for compressible miscible displacement in porous media , 1995 .
[3] Xiaobing Feng,et al. Strong solutions to a nonlinear parabolic system modeling compressible miscible displacement in porous media , 1994 .
[4] Jacques-Louis Lions,et al. On Some Questions in Boundary Value Problems of Mathematical Physics , 1978 .
[5] D. W. Peaceman. Fundamentals of numerical reservoir simulation , 1977 .
[6] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[7] E. Koval,et al. A Method for Predicting the Performance of Unstable Miscible Displacement in Heterogeneous Media , 1963 .
[8] O. Ladyženskaja. Linear and Quasilinear Equations of Parabolic Type , 1968 .
[9] S. N. Antont︠s︡ev,et al. Boundary Value Problems in Mechanics of Nonhomogeneous Fluids , 1990 .
[10] Jean E. Roberts,et al. Numerical methods for a model for compressible miscible displacement in porous media , 1983 .
[11] Adrian E. Scheidegger,et al. The physics of flow through porous media , 1957 .
[12] G. M. D. Penha. Contemporary developments in continuum mechanics and partial differential equations , 1978 .
[13] A. Ziani,et al. MATHEMATICAL ANALYSIS FOR COMPRESSIBLE MISCIBLE DISPLACEMENT MODELS IN POROUS MEDIA , 1996 .
[14] E. Boschi. Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .