Global weak solutions for a parabolic system modeling a one-dimensional miscible flow in porous media

Abstract We consider an initial boundary value problem for a nonlinear differential system of two equations. Such a system is formed by the equations of compressible miscible flow in a one-dimensional porous medium. No assumption about the mobility ratio is involved. Under some reasonable assumptions on the data, we prove the existence of a global weak solution. Our basic approach is the semi-Galerkin method. We use the technique of renormalized solutions for parabolic equations in the derivation of a priori estimates.

[1]  T. Gallouët,et al.  Non-linear elliptic and parabolic equations involving measure data , 1989 .

[2]  Analysis of a one-dimensional model for compressible miscible displacement in porous media , 1995 .

[3]  Xiaobing Feng,et al.  Strong solutions to a nonlinear parabolic system modeling compressible miscible displacement in porous media , 1994 .

[4]  Jacques-Louis Lions,et al.  On Some Questions in Boundary Value Problems of Mathematical Physics , 1978 .

[5]  D. W. Peaceman Fundamentals of numerical reservoir simulation , 1977 .

[6]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[7]  E. Koval,et al.  A Method for Predicting the Performance of Unstable Miscible Displacement in Heterogeneous Media , 1963 .

[8]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[9]  S. N. Antont︠s︡ev,et al.  Boundary Value Problems in Mechanics of Nonhomogeneous Fluids , 1990 .

[10]  Jean E. Roberts,et al.  Numerical methods for a model for compressible miscible displacement in porous media , 1983 .

[11]  Adrian E. Scheidegger,et al.  The physics of flow through porous media , 1957 .

[12]  G. M. D. Penha Contemporary developments in continuum mechanics and partial differential equations , 1978 .

[13]  A. Ziani,et al.  MATHEMATICAL ANALYSIS FOR COMPRESSIBLE MISCIBLE DISPLACEMENT MODELS IN POROUS MEDIA , 1996 .

[14]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .