Smallest Enclosing Ellipses - Fast and Exact

The problem of nding the smallest enclosing ellipsoid of an n-point set P in d-space is an instance of convex programming and can be solved by general methods in time O(n) if the dimension is xed. The problem-speciic parts of these methods are encapsulated in primitive operations that deal with subproblems of constant size. We derive explicit formulae for the primitive operations of Welzl's randomized method 22] in dimension d = 2. Compared to previous ones, these formulae are simpler and faster to evaluate, and they only contain rational expressions, allowing for an exact solution.

[1]  N. Shor,et al.  New algorithms for constructing optimal circumscribed and inscribed ellipsoids , 1992 .

[2]  Christian Bouville Bounding ellipsoids for ray-fractal intersection , 1985, SIGGRAPH '85.

[3]  Emo Welzl,et al.  Linear Programming - Randomization and Abstract Frameworks , 1996, STACS.

[4]  Emo Welzl,et al.  Smallest enclosing disks (balls and ellipsoids) , 1991, New Results and New Trends in Computer Science.

[5]  D. Titterington Estimation of Correlation Coefficients by Ellipsoidal Trimming , 1978 .

[6]  I. Adler,et al.  A randomization scheme for speeding up algorithms for linear and convex quadratic programming proble , 1990 .

[7]  L. Danzer,et al.  Über das Löwnersche Ellipsoid und sein Analogon unter den einem Eikörper einbeschriebenen Ellipsoiden , 1957 .

[8]  Bernd Gärtner,et al.  Exact primitives for smallest enclosing ellipses , 1997, SCG '97.

[9]  Martin E. Dyer,et al.  A class of convex programs with applications to computational geometry , 1992, SCG '92.

[10]  D. Titterington,et al.  Minimum Covering Ellipses , 1980 .

[11]  Mark J. Post Minimum spanning ellipsoids , 1984, STOC '84.

[12]  V. Leitáo,et al.  Computer Graphics: Principles and Practice , 1995 .

[13]  Micha Sharir,et al.  A subexponential bound for linear programming , 1992, SCG '92.

[14]  V. Barnett The Ordering of Multivariate Data , 1976 .

[15]  Kurt Mehlhorn,et al.  LEDA: a platform for combinatorial and geometric computing , 1997, CACM.

[16]  D. Titterington Optimal design: Some geometrical aspects of D-optimality , 1975 .