Smallest Enclosing Ellipses - Fast and Exact
暂无分享,去创建一个
[1] N. Shor,et al. New algorithms for constructing optimal circumscribed and inscribed ellipsoids , 1992 .
[2] Christian Bouville. Bounding ellipsoids for ray-fractal intersection , 1985, SIGGRAPH '85.
[3] Emo Welzl,et al. Linear Programming - Randomization and Abstract Frameworks , 1996, STACS.
[4] Emo Welzl,et al. Smallest enclosing disks (balls and ellipsoids) , 1991, New Results and New Trends in Computer Science.
[5] D. Titterington. Estimation of Correlation Coefficients by Ellipsoidal Trimming , 1978 .
[6] I. Adler,et al. A randomization scheme for speeding up algorithms for linear and convex quadratic programming proble , 1990 .
[7] L. Danzer,et al. Über das Löwnersche Ellipsoid und sein Analogon unter den einem Eikörper einbeschriebenen Ellipsoiden , 1957 .
[8] Bernd Gärtner,et al. Exact primitives for smallest enclosing ellipses , 1997, SCG '97.
[9] Martin E. Dyer,et al. A class of convex programs with applications to computational geometry , 1992, SCG '92.
[10] D. Titterington,et al. Minimum Covering Ellipses , 1980 .
[11] Mark J. Post. Minimum spanning ellipsoids , 1984, STOC '84.
[12] V. Leitáo,et al. Computer Graphics: Principles and Practice , 1995 .
[13] Micha Sharir,et al. A subexponential bound for linear programming , 1992, SCG '92.
[14] V. Barnett. The Ordering of Multivariate Data , 1976 .
[15] Kurt Mehlhorn,et al. LEDA: a platform for combinatorial and geometric computing , 1997, CACM.
[16] D. Titterington. Optimal design: Some geometrical aspects of D-optimality , 1975 .