On asymptotic formulae in some sum–product questions
暂无分享,去创建一个
[1] Michio Suzuki. Group Theory I , 1981 .
[2] Frank de Zeeuw,et al. An improved point‐line incidence bound over arbitrary fields , 2016, 1609.06284.
[3] I. Shkredov,et al. On the few products, many sums problem , 2017, Journal de Théorie des Nombres de Bordeaux.
[4] Antal Balog,et al. A low-energy decomposition theorem , 2015, 1510.03309.
[5] B. Murphy,et al. A Second Wave of Expanders over Finite Fields , 2015, 1701.01635.
[6] Ilya D. Shkredov,et al. NEW RESULTS ON SUM‐PRODUCT TYPE GROWTH OVER FIELDS , 2017, Mathematika.
[7] Ilya D. Shkredov,et al. Any small multiplicative subgroup is not a sumset , 2017, Finite Fields Their Appl..
[8] Ilya D. Shkredov,et al. On sum sets of sets having small product set , 2015, 1503.05771.
[9] L. Rédei,et al. Lückenhafte Polynome über endlichen Körpern , 1970 .
[10] I. Shkredov,et al. Popular products and continued fractions , 2018, Israel Journal of Mathematics.
[11] Misha Rudnev,et al. Growth Estimates in Positive Characteristic via Collisions , 2015, 1512.06613.
[12] Ilya D. Shkredov,et al. Some remarks on the asymmetric sum-product phenomenon , 2017, Moscow Journal of Combinatorics and Number Theory.
[13] J. Bourgain. A modular Szemeredi-Trotter theorem for hyperbolas , 2012, 1208.4008.
[14] Le Anh Vinh,et al. The Szemerédi-Trotter type theorem and the sum-product estimate in finite fields , 2007, Eur. J. Comb..
[15] T. Schoen,et al. Higher moments of convolutions , 2011, 1110.2986.
[16] Endre Szemerédi,et al. On sums and products of integers , 1983 .
[17] Jean Bourgain,et al. Estimates on exponential sums related to the Diffie–Hellman Distributions , 2005 .
[18] J. Bourgain,et al. EXPONENTIAL SUM ESTIMATES OVER SUBGROUPS AND ALMOST SUBGROUPS OF Zq, WHERE q IS COMPOSITE WITH FEW PRIME FACTORS , 2006 .
[19] H. Iwaniec,et al. Analytic Number Theory , 2004 .
[20] I. Shkredov. Some remarks on the Balog–Wooley decomposition theorem and quantities D+, D× , 2016, 1605.00266.
[21] Thang Pham,et al. A Szemerédi-Trotter type theorem, sum-product estimates in finite quasifields, and related results , 2017, J. Comb. Theory, Ser. A.
[22] M. Z. Garaev,et al. THE SUM-PRODUCT ESTIMATE FOR LARGE SUBSETS OF PRIME FIELDS , 2007, 0706.0702.
[23] Ilya D. Shkredov,et al. On additive bases of sets with small product set , 2016, 1606.02320.
[24] L. Guth,et al. On the Erdős distinct distances problem in the plane , 2015 .
[25] B. Murphy,et al. Products of Differences over Arbitrary Finite Fields , 2017, Discrete Analysis.
[26] Michael Rudnev,et al. On the Number of Incidences Between Points and Planes in Three Dimensions , 2014, Comb..
[27] Giorgis Petridis,et al. A point-line incidence identity in finite fields, and applications , 2016, 1601.03981.
[28] I. Shkredov. Some new inequalities in additive combinatorics , 2012, 1208.2344.
[29] I. Shkredov,et al. New sum-product type estimates over finite fields , 2014, 1408.0542.
[30] Simon Macourt. Incidence Results and Bounds Of Trilinear and Quadrilinear Exponential Sums , 2018, SIAM J. Discret. Math..
[31] Tamás Szonyi. Around Rédei's theorem , 1999, Discret. Math..
[32] Sergei Konyagin,et al. Combinatorial Complexity of Convex Sequences , 2006, Discret. Comput. Geom..
[33] S. Konyagin,et al. New results on sum-products in R , 2016, 1602.03473.
[34] S. V. Konyagin,et al. New results on sums and products in ℝ , 2016 .
[35] S. Konyagin,et al. Additive properties of product sets in fields of prime order , 2007 .
[36] Jean Bourgain,et al. On a variant of sum-product estimates and explicit exponential sum bounds in prime fields , 2009, Mathematical Proceedings of the Cambridge Philosophical Society.
[37] Joshua Zahl,et al. A Szemerédi–Trotter Type Theorem in $$\mathbb {R}^4$$R4 , 2012, Discret. Comput. Geom..
[38] Ilya D. Shkredov,et al. On the energy variant of the sum-product conjecture , 2016, Revista Matemática Iberoamericana.
[39] H. Helfgott. Growth and generation in $\mathrm{SL}_2(\mathbb{Z}/p \mathbb{Z})$ , 2008 .
[40] Derrick Hart,et al. h-Fold Sums from a Set with Few Products , 2009, SIAM J. Discret. Math..
[41] Some new results on higher energies , 2012, 1212.6414.
[42] Жан Бургейн,et al. Сумма множеств, образованных обратными элементами в полях простого порядка, и полилинейные суммы Клоостермана@@@Sumsets of reciprocals in prime fields and multilinear Kloosterman sums , 2014 .
[43] N. Gill,et al. QUASIRANDOM GROUP ACTIONS , 2013, Forum of Mathematics, Sigma.
[44] Terence Tao,et al. A sum-product estimate in finite fields, and applications , 2003, math/0301343.
[45] Igor E. Shparlinski,et al. Character sums with exponential functions , 2000 .
[46] Igor E. Shparlinski,et al. Character Sums with Exponential Functions and their Applications: Bounds of Short Character Sums , 1999 .
[47] Peter Sarnak,et al. Bounds for multiplicities of automorphic representations , 1991 .
[48] B. Murphy. Upper and lower bounds for rich lines in grids , 2017, American Journal of Mathematics.
[49] Jean Bourgain,et al. Estimates for the Number of Sums and Products and for Exponential Sums in Fields of Prime Order , 2006 .
[50] József Solymosi,et al. Bounding multiplicative energy by the sumset , 2009 .
[51] G. Petridis. F eb 2 01 7 Collinear triples and quadruples in Cartesian products in F 2 p , 2017 .
[52] J. Bourgain,et al. MORE ON THE SUM-PRODUCT PHENOMENON IN PRIME FIELDS AND ITS APPLICATIONS , 2005 .
[53] J. Bourgain,et al. Uniform expansion bounds for Cayley graphs of SL2(Fp) , 2008 .
[54] M. Z. Garaev. Sums and products of sets and estimates of rational trigonometric sums in fields of prime order , 2010 .
[55] W. T. Gowers,et al. Quasirandom Groups , 2007, Combinatorics, Probability and Computing.
[56] Jean Bourgain,et al. Multilinear Exponential Sums in Prime Fields Under Optimal Entropy Condition on the Sources , 2009 .
[57] Larry Guth,et al. On the Erdos distinct distance problem in the plane , 2010, 1011.4105.
[58] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[59] Mukarram Ahmad,et al. Continued fractions , 2019, Quadratic Number Theory.
[60] K. Williams,et al. Gauss and Jacobi sums , 2021, Mathematical Surveys and Monographs.
[61] Igor E. Shparlinski,et al. Bounds of Trilinear and Quadrilinear Exponential Sums , 2016, Journal d'Analyse Mathématique.
[62] J. Bourgain,et al. Exponential sum estimates over subgroups and almost subgroups of $$ \mathbb{Z}_{Q}^{*} $$, where Q is composite with few prime factors , 2006 .