On asymptotic formulae in some sum–product questions

In this paper we obtain a series of asymptotic formulae in the sum--product phenomena over the prime field $\mathbf{F}_p$. In the proofs we use usual incidence theorems in $\mathbf{F}_p$, as well as the growth result in ${\rm SL}_2 (\mathbf{F}_p)$ due to Helfgott. Here some of our applications: $\bullet~$ a new bound for the number of the solutions to the equation $(a_1-a_2) (a_3-a_4) = (a'_1-a'_2) (a'_3-a'_4)$, $\,a_i, a'_i\in A$, $A$ is an arbitrary subset of $\mathbf{F}_p$, $\bullet~$ a new effective bound for multilinear exponential sums of Bourgain, $\bullet~$ an asymptotic analogue of the Balog--Wooley decomposition theorem, $\bullet~$ growth of $p_1(b) + 1/(a+p_2 (b))$, where $a,b$ runs over two subsets of $\mathbf{F}_p$, $p_1,p_2 \in \mathbf{F}_p [x]$ are two non--constant polynomials, $\bullet~$ new bounds for some exponential sums with multiplicative and additive characters.

[1]  Michio Suzuki Group Theory I , 1981 .

[2]  Frank de Zeeuw,et al.  An improved point‐line incidence bound over arbitrary fields , 2016, 1609.06284.

[3]  I. Shkredov,et al.  On the few products, many sums problem , 2017, Journal de Théorie des Nombres de Bordeaux.

[4]  Antal Balog,et al.  A low-energy decomposition theorem , 2015, 1510.03309.

[5]  B. Murphy,et al.  A Second Wave of Expanders over Finite Fields , 2015, 1701.01635.

[6]  Ilya D. Shkredov,et al.  NEW RESULTS ON SUM‐PRODUCT TYPE GROWTH OVER FIELDS , 2017, Mathematika.

[7]  Ilya D. Shkredov,et al.  Any small multiplicative subgroup is not a sumset , 2017, Finite Fields Their Appl..

[8]  Ilya D. Shkredov,et al.  On sum sets of sets having small product set , 2015, 1503.05771.

[9]  L. Rédei,et al.  Lückenhafte Polynome über endlichen Körpern , 1970 .

[10]  I. Shkredov,et al.  Popular products and continued fractions , 2018, Israel Journal of Mathematics.

[11]  Misha Rudnev,et al.  Growth Estimates in Positive Characteristic via Collisions , 2015, 1512.06613.

[12]  Ilya D. Shkredov,et al.  Some remarks on the asymmetric sum-product phenomenon , 2017, Moscow Journal of Combinatorics and Number Theory.

[13]  J. Bourgain A modular Szemeredi-Trotter theorem for hyperbolas , 2012, 1208.4008.

[14]  Le Anh Vinh,et al.  The Szemerédi-Trotter type theorem and the sum-product estimate in finite fields , 2007, Eur. J. Comb..

[15]  T. Schoen,et al.  Higher moments of convolutions , 2011, 1110.2986.

[16]  Endre Szemerédi,et al.  On sums and products of integers , 1983 .

[17]  Jean Bourgain,et al.  Estimates on exponential sums related to the Diffie–Hellman Distributions , 2005 .

[18]  J. Bourgain,et al.  EXPONENTIAL SUM ESTIMATES OVER SUBGROUPS AND ALMOST SUBGROUPS OF Zq, WHERE q IS COMPOSITE WITH FEW PRIME FACTORS , 2006 .

[19]  H. Iwaniec,et al.  Analytic Number Theory , 2004 .

[20]  I. Shkredov Some remarks on the Balog–Wooley decomposition theorem and quantities D+, D× , 2016, 1605.00266.

[21]  Thang Pham,et al.  A Szemerédi-Trotter type theorem, sum-product estimates in finite quasifields, and related results , 2017, J. Comb. Theory, Ser. A.

[22]  M. Z. Garaev,et al.  THE SUM-PRODUCT ESTIMATE FOR LARGE SUBSETS OF PRIME FIELDS , 2007, 0706.0702.

[23]  Ilya D. Shkredov,et al.  On additive bases of sets with small product set , 2016, 1606.02320.

[24]  L. Guth,et al.  On the Erdős distinct distances problem in the plane , 2015 .

[25]  B. Murphy,et al.  Products of Differences over Arbitrary Finite Fields , 2017, Discrete Analysis.

[26]  Michael Rudnev,et al.  On the Number of Incidences Between Points and Planes in Three Dimensions , 2014, Comb..

[27]  Giorgis Petridis,et al.  A point-line incidence identity in finite fields, and applications , 2016, 1601.03981.

[28]  I. Shkredov Some new inequalities in additive combinatorics , 2012, 1208.2344.

[29]  I. Shkredov,et al.  New sum-product type estimates over finite fields , 2014, 1408.0542.

[30]  Simon Macourt Incidence Results and Bounds Of Trilinear and Quadrilinear Exponential Sums , 2018, SIAM J. Discret. Math..

[31]  Tamás Szonyi Around Rédei's theorem , 1999, Discret. Math..

[32]  Sergei Konyagin,et al.  Combinatorial Complexity of Convex Sequences , 2006, Discret. Comput. Geom..

[33]  S. Konyagin,et al.  New results on sum-products in R , 2016, 1602.03473.

[34]  S. V. Konyagin,et al.  New results on sums and products in ℝ , 2016 .

[35]  S. Konyagin,et al.  Additive properties of product sets in fields of prime order , 2007 .

[36]  Jean Bourgain,et al.  On a variant of sum-product estimates and explicit exponential sum bounds in prime fields , 2009, Mathematical Proceedings of the Cambridge Philosophical Society.

[37]  Joshua Zahl,et al.  A Szemerédi–Trotter Type Theorem in $$\mathbb {R}^4$$R4 , 2012, Discret. Comput. Geom..

[38]  Ilya D. Shkredov,et al.  On the energy variant of the sum-product conjecture , 2016, Revista Matemática Iberoamericana.

[39]  H. Helfgott Growth and generation in $\mathrm{SL}_2(\mathbb{Z}/p \mathbb{Z})$ , 2008 .

[40]  Derrick Hart,et al.  h-Fold Sums from a Set with Few Products , 2009, SIAM J. Discret. Math..

[41]  Some new results on higher energies , 2012, 1212.6414.

[42]  Жан Бургейн,et al.  Сумма множеств, образованных обратными элементами в полях простого порядка, и полилинейные суммы Клоостермана@@@Sumsets of reciprocals in prime fields and multilinear Kloosterman sums , 2014 .

[43]  N. Gill,et al.  QUASIRANDOM GROUP ACTIONS , 2013, Forum of Mathematics, Sigma.

[44]  Terence Tao,et al.  A sum-product estimate in finite fields, and applications , 2003, math/0301343.

[45]  Igor E. Shparlinski,et al.  Character sums with exponential functions , 2000 .

[46]  Igor E. Shparlinski,et al.  Character Sums with Exponential Functions and their Applications: Bounds of Short Character Sums , 1999 .

[47]  Peter Sarnak,et al.  Bounds for multiplicities of automorphic representations , 1991 .

[48]  B. Murphy Upper and lower bounds for rich lines in grids , 2017, American Journal of Mathematics.

[49]  Jean Bourgain,et al.  Estimates for the Number of Sums and Products and for Exponential Sums in Fields of Prime Order , 2006 .

[50]  József Solymosi,et al.  Bounding multiplicative energy by the sumset , 2009 .

[51]  G. Petridis F eb 2 01 7 Collinear triples and quadruples in Cartesian products in F 2 p , 2017 .

[52]  J. Bourgain,et al.  MORE ON THE SUM-PRODUCT PHENOMENON IN PRIME FIELDS AND ITS APPLICATIONS , 2005 .

[53]  J. Bourgain,et al.  Uniform expansion bounds for Cayley graphs of SL2(Fp) , 2008 .

[54]  M. Z. Garaev Sums and products of sets and estimates of rational trigonometric sums in fields of prime order , 2010 .

[55]  W. T. Gowers,et al.  Quasirandom Groups , 2007, Combinatorics, Probability and Computing.

[56]  Jean Bourgain,et al.  Multilinear Exponential Sums in Prime Fields Under Optimal Entropy Condition on the Sources , 2009 .

[57]  Larry Guth,et al.  On the Erdos distinct distance problem in the plane , 2010, 1011.4105.

[58]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[59]  Mukarram Ahmad,et al.  Continued fractions , 2019, Quadratic Number Theory.

[60]  K. Williams,et al.  Gauss and Jacobi sums , 2021, Mathematical Surveys and Monographs.

[61]  Igor E. Shparlinski,et al.  Bounds of Trilinear and Quadrilinear Exponential Sums , 2016, Journal d'Analyse Mathématique.

[62]  J. Bourgain,et al.  Exponential sum estimates over subgroups and almost subgroups of $$ \mathbb{Z}_{Q}^{*} $$, where Q is composite with few prime factors , 2006 .