Chapter 6 Controlling cardiac arrhythmias: The relevance of nonlinear dynamics

Publisher Summary This chapter outlines the basic electrophysiological properties of the heart, the nature of cardiac arrhythmias, and the analysis and control of arrhythmias. In addition, to focusing on nonlinear dynamics, the chapter discusses the remarkable advancements made from within the medical community to give dynamicists a better appreciation of the current state of the art in arrhythmia management—its strengths, weaknesses, and areas in which nonlinear dynamics might have the greatest impact. The chapter emphasizes those arrhythmias for which the field of nonlinear dynamics is particularly relevant and describes the advantages and disadvantages of the current clinical methods of suppressing or curing such arrhythmias. It describes some recent advancement in nonlinear dynamical control of temporal arrhythmias that could lead to improved arrhythmia management.

[1]  Leon Glass,et al.  How to Tell a Target from a Spiral: The Two Probe Problem , 1999 .

[2]  Norman S. Nise,et al.  Control Systems Engineering , 1991 .

[3]  J M Clarke,et al.  Proceedings: Rhythm of normal human heart. , 1976, British heart journal.

[4]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[5]  Mark E. Josephson,et al.  Clinical cardiac electrophysiology ; techniques and interpretations , 2001 .

[6]  Leon Glass,et al.  Bifurcations in Flat-Topped Maps and the Control of Cardiac Chaos , 1994 .

[7]  M. Simson,et al.  Oscillations of conduction, action potential duration, and refractoriness. A mechanism for spontaneous termination of reentrant tachycardias. , 1988, Circulation.

[8]  David J. Christini,et al.  Real-time, adaptive, model-independent control of low-dimensional chaotic and nonchaotic dynamical systems , 1997 .

[9]  Auerbach Controlling extended systems of chaotic elements. , 1994, Physical review letters.

[10]  L. Glass,et al.  Alternation of Atrioventricular Nodal Conduction Time During Atrioventricular Reentrant Tachycardia: , 1996, Journal of cardiovascular electrophysiology.

[11]  K. Showalter,et al.  Controlling chemical chaos , 1991 .

[12]  Schouten,et al.  Experimental control of a chaotic pendulum with unknown dynamics using delay coordinates. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  Arun V. Holden,et al.  Computational biology of the heart , 1998, The Mathematical Gazette.

[14]  Guanrong Chen,et al.  FEEDBACK CONTROL OF A QUADRATIC MAP MODEL OF CARDIAC CHAOS , 1996 .

[15]  Grebogi,et al.  Controlling chaos in high dimensional systems. , 1992, Physical review letters.

[16]  A V Holden,et al.  Reentrant waves and their elimination in a model of mammalian ventricular tissue. , 1998, Chaos.

[17]  K. Showalter,et al.  Controlling spatiotemporal dynamics of flame fronts , 1994 .

[18]  Gauthier,et al.  Stabilizing unstable periodic orbits in a fast diode resonator using continuous time-delay autosynchronization. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  R J Sung,et al.  Electrophysiologic Identification of Dual Atrioventricular Nodal Pathway Conduction in Patients with Reciprocating Tachycardia Using Anomalous Bypass Tracts , 1979, Circulation.

[20]  L. Glass,et al.  DYNAMIC CONTROL OF CARDIAC ALTERNANS , 1997 .

[21]  W. Dassen,et al.  Cycle Length Alternation in Circus Movement Tachycardia Using an Atrioventricular Accessory Pathway: A Study of the Role of the Atrioventricular Node Using a Computer Model of Tachycardia , 1982, Circulation.

[22]  A. T. Winfree,et al.  Evolving perspectives during 12 years of electrical turbulence. , 1998, Chaos.

[23]  Valery Petrov,et al.  A map‐based algorithm for controlling low‐dimensional chaos , 1992 .

[24]  Ditto,et al.  Experimental control of chaos. , 1990, Physical review letters.

[25]  M. Rosenqvist,et al.  Pacing Techniques to Terminate Ventricular Tachycardia , 1995, Pacing and clinical electrophysiology : PACE.

[26]  L Glass,et al.  Alternans and period-doubling bifurcations in atrioventricular nodal conduction. , 1995, Journal of theoretical biology.

[27]  Qu,et al.  Controlling spatiotemporal chaos in coupled map lattice systems. , 1994, Physical review letters.

[28]  Roy,et al.  Dynamical control of a chaotic laser: Experimental stabilization of a globally coupled system. , 1992, Physical review letters.

[29]  L. Glass,et al.  Theory of heart : biomechanics, biophysics, and nonlinear dynamics of cardiac function , 1991 .

[30]  Leon Glass,et al.  Theory of reentrant excitation in a ring of cardiac tissue , 1992 .

[31]  Martienssen,et al.  Controlling chaos experimentally in systems exhibiting large effective Lyapunov exponents. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  L. Glass,et al.  Instabilities of a propagating pulse in a ring of excitable media. , 1993, Physical review letters.

[33]  Ding,et al.  Controlling chaos in high dimensions: Theory and experiment. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[34]  Christini,et al.  Experimental control of high-dimensional chaos: The driven double pendulum. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  Collins,et al.  Controlling nonchaotic neuronal noise using chaos control techniques. , 1995, Physical review letters.

[36]  Visarath In,et al.  REAL-TIME EXPERIMENTAL CONTROL OF A SYSTEM IN ITS CHAOTIC AND NONCHAOTIC REGIMES , 1997 .

[37]  Valery Petrov,et al.  Controlling chaos in the Belousov—Zhabotinsky reaction , 1993, Nature.

[38]  B B Lerman,et al.  The role of nonlinear dynamics in cardiac arrhythmia control. , 1999, Heart disease.

[39]  E. Hunt Stabilizing high-period orbits in a chaotic system: The diode resonator. , 1991 .

[40]  A Garfinkel,et al.  Controlling cardiac chaos. , 1992, Science.

[41]  Christini,et al.  Using chaos control and tracking to suppress a pathological nonchaotic rhythm in a cardiac model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  David J. Christini,et al.  Control of chaos in excitable physiological systems: A geometric analysis. , 1997, Chaos.

[43]  L Glass,et al.  Locating Ectopic Foci , 1999, Journal of cardiovascular electrophysiology.