Combining predictive distributions for the statistical post-processing of ensemble forecasts

Statistical post-processing techniques are now used widely for correcting systematic biases and errors in the calibration of ensemble forecasts obtained from multiple runs of numerical weather prediction models. A standard approach is the ensemble model output statistics (EMOS) method, which results in a predictive distribution that is given by a single parametric law, with parameters that depend on the ensemble members. This article assesses the merits of combining multiple EMOS models based on different parametric families. In four case studies with wind speed and precipitation forecasts from two ensemble prediction systems, we investigate the performances of state of the art forecast combination methods and propose a computationally efficient approach for determining linear pool combination weights. We study the performance of forecast combination compared to that of the theoretically superior but cumbersome estimation of a full mixture model, and assess which degree of flexibility of the forecast combination approach yields the best practical results for post-processing applications.

[1]  S. Hall,et al.  Combining density forecasts , 2007 .

[2]  AndrÁS HorÁNyi,et al.  Latest developments around the ALADIN operational short-range ensemble prediction system in Hungary , 2011 .

[3]  Ridwan Siddique,et al.  Postprocessing of GEFS Precipitation Ensemble Reforecasts over the U.S. Mid-Atlantic Region , 2017 .

[4]  F. Pappenberger,et al.  Trends in the predictive performance of raw ensemble weather forecasts , 2014 .

[5]  Michael Scheuerer,et al.  Probabilistic wind speed forecasting on a grid based on ensemble model output statistics , 2015, 1511.02001.

[6]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[7]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[8]  S. Baran,et al.  Similarity‐based semilocal estimation of post‐processing models , 2015, 1509.03521.

[9]  Clifford F. Mass,et al.  Aspects of Effective Mesoscale, Short-Range Ensemble Forecasting , 2005 .

[10]  T. Gneiting,et al.  Combining Predictive Distributions , 2011, 1106.1638.

[11]  Thomas M. Hamill,et al.  Probabilistic Quantitative Precipitation Forecasts Based on Reforecast Analogs: Theory and Application , 2006 .

[12]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[13]  T. Gneiting 719 Calibration of Medium-Range Weather Forecasts , 2014 .

[14]  S. Baran,et al.  Mixture EMOS model for calibrating ensemble forecasts of wind speed , 2015, Environmetrics.

[15]  Stephen G. Walker,et al.  Slice sampling mixture models , 2011, Stat. Comput..

[16]  W. R. Hargraves,et al.  Methods for Estimating Wind Speed Frequency Distributions. , 1978 .

[17]  R. L. Winkler,et al.  Scoring Rules for Continuous Probability Distributions , 1976 .

[18]  J. Flowerdew Calibrating ensemble reliability whilst preserving spatial structure , 2014 .

[19]  H. Künsch The Jackknife and the Bootstrap for General Stationary Observations , 1989 .

[20]  T. Thorarinsdottir,et al.  Comparison of non-homogeneous regression models for probabilistic wind speed forecasting , 2013, 1305.2026.

[21]  A. Raftery,et al.  Probabilistic forecasts, calibration and sharpness , 2007 .

[22]  W. Briggs Statistical Methods in the Atmospheric Sciences , 2007 .

[23]  Anton H. Westveld,et al.  Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation , 2005 .

[24]  Stephen G. Walker,et al.  Sampling the Dirichlet Mixture Model with Slices , 2006, Commun. Stat. Simul. Comput..

[25]  Michel van der Wel,et al.  Combining Density Forecasts using Focused Scoring Rules , 2015 .

[26]  Andras Horanyi,et al.  The ARPEGE/ALADIN mesoscale numerical modeling system and its application at the Hungarian Meteorological Service , 2006 .

[27]  A. Raftery,et al.  Using Bayesian Model Averaging to Calibrate Forecast Ensembles , 2005 .

[28]  Annette Moller,et al.  Probabilistic temperature forecasting based on an ensemble autoregressive modification , 2015, 1508.01397.

[29]  Tim N. Palmer,et al.  The economic value of ensemble forecasts as a tool for risk assessment: From days to decades , 2002 .

[30]  S. Baran,et al.  Log‐normal distribution based Ensemble Model Output Statistics models for probabilistic wind‐speed forecasting , 2014, 1407.3252.

[31]  J. Torres,et al.  Fitting wind speed distributions: a case study , 1998 .

[32]  Tilmann Gneiting,et al.  Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression , 2010 .

[33]  Roberto Casarin,et al.  Bayesian Nonparametric Calibration and Combination of Predictive Distributions , 2015, 1502.07246.

[34]  Florian Pappenberger,et al.  The TIGGE Project and Its Achievements , 2016 .

[35]  Florian Pappenberger,et al.  Discrete Postprocessing of Total Cloud Cover Ensemble Forecasts , 2016 .

[36]  G. Grell,et al.  A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5) , 1994 .

[37]  Marco Del Negro,et al.  Dynamic Prediction Pools: An Investigation of Financial Frictions and Forecasting Performance , 2014 .

[38]  Olivier Mestre,et al.  Calibrated Ensemble Forecasts Using Quantile Regression Forests and Ensemble Model Output Statistics , 2016 .

[39]  J. M. Sloughter,et al.  Probabilistic Quantitative Precipitation Forecasting Using Bayesian Model Averaging , 2007 .

[40]  Vu,et al.  Time-Varying Combinations of Predictive Densities Using Nonlinear Filtering , 2012 .

[41]  Tilmann Gneiting,et al.  Calibrating Multimodel Forecast Ensembles with Exchangeable and Missing Members Using Bayesian Model Averaging , 2010 .

[42]  Thomas M. Hamill,et al.  Statistical Postprocessing of Ensemble Precipitation Forecasts by Fitting Censored, Shifted Gamma Distributions* , 2015 .

[43]  Tilmann Gneiting,et al.  Probabilistic Forecasting and Comparative Model Assessment Based on Markov Chain Monte Carlo Output , 2016, 1608.06802.

[44]  F. Molteni,et al.  The ECMWF Ensemble Prediction System: Methodology and validation , 1996 .

[45]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[46]  S'andor Baran,et al.  Censored and shifted gamma distribution based EMOS model for probabilistic quantitative precipitation forecasting , 2015, 1512.04068.

[47]  T. Iversen,et al.  Evaluation of ‘GLAMEPS’—a proposed multimodel EPS for short range forecasting , 2011 .

[48]  Alain Joly,et al.  PEARP, the Météo‐France short‐range ensemble prediction system , 2015 .

[49]  Adrian E. Raftery,et al.  Weather Forecasting with Ensemble Methods , 2005, Science.

[50]  Frederick Anthony Eckel,et al.  Effective mesoscale, short-range ensemble forecasting , 2003 .

[51]  M. Scheuerer Probabilistic quantitative precipitation forecasting using Ensemble Model Output Statistics , 2013, 1302.0893.

[52]  Francesco Ravazzolo,et al.  Forecaster's Dilemma: Extreme Events and Forecast Evaluation , 2015, 1512.09244.