A characterization of epi-convergence in terms of convergence of level sets

Let LSC(X) denote the extended real-valued lower semicontinuous functions on a separable metrizable space X. We show that a sequence (fn) in LSC(X) is epi-convergent o f e LSC(X) if and only for each real a , the level set of height a of f can be recovered as the Painleve-Kuratowski limit of an appropriately chosen sequence of level sets of the fn at heights an approaching a. Assuming the continuum hypothesis, this result fails without separability. An analogous result holds for weakly lower semicontinuous functions defined on a separable Banach space with respect to Mosco epi-convergence.

[1]  Jean-Paul Penot,et al.  The cosmic Hausdorff topology, the bounded Hausdorff topology and continuity of polarity , 1991 .

[2]  R. Wets A formula for the level sets of epi-limits and some applications , 1983 .

[3]  Roberto Lucchetti,et al.  Convex optimization and the epi-distance topology , 1991 .

[4]  R. Wets,et al.  Quantitative stability of variational systems. I. The epigraphical distance , 1991 .

[5]  Umberto Mosco,et al.  Stopping times and Γ-convergence , 1987 .

[6]  J. M. G. Fell,et al.  A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space , 1962 .

[7]  L. McLinden,et al.  Preservation of convergence of convex sets and functions in finite dimensions , 1981 .

[8]  U. Mosco On the continuity of the Young-Fenchel transform , 1971 .

[9]  Gerald Beer,et al.  Conjugate convex functions and the epi-distance topology , 1990 .

[10]  J. Borwein,et al.  Mosco convergence and reflexivity , 1990 .

[11]  R. Rockafellar,et al.  Variational systems, an introduction , 1984 .

[12]  G. Beer Metric spaces with nice closed balls and distance functions for closed sets , 1987, Bulletin of the Australian Mathematical Society.

[13]  J. Borwein,et al.  MOSCO CONVERGENCE AND THE KADEC PROPERTY , 1989 .

[14]  M. Volle Contributions à la dualité en optimisation et à l'épi-convergence , 1986 .

[15]  R. Wets,et al.  On the relations between two types of convergence for convex functions , 1977 .

[16]  Jean-Paul Penot,et al.  Operations on convergent families of sets and functions , 1990 .

[17]  H. Attouch Variational convergence for functions and operators , 1984 .

[18]  U. Mosco Convergence of convex sets and of solutions of variational inequalities , 1969 .

[19]  S. Levi,et al.  Quasi-uniformization of hyperspaces and convergence of nets of semicontinuous multifunctions , 1985 .

[20]  M. Tsukada Convergence of best approximations in a smooth Banach space , 1984 .

[21]  Gerald Beer,et al.  On convergence of convex sets and relative Chebyshev centers , 1990 .

[22]  Gerald Beer,et al.  On Mosco convergence of convex sets , 1988, Bulletin of the Australian Mathematical Society.

[23]  Roberto Lucchetti,et al.  Minima of quasi-convex functions , 1989 .