It’s Morphin’ Time! Combating Linguistic Discrimination with Inflectional Perturbations

Training on only perfect Standard English corpora predisposes pre-trained neural networks to discriminate against minorities from non-standard linguistic backgrounds (e.g., African American Vernacular English, Colloquial Singapore English, etc.). We perturb the inflectional morphology of words to craft plausible and semantically similar adversarial examples that expose these biases in popular NLP models, e.g., BERT and Transformer, and show that adversarially fine-tuning them for a single epoch significantly improves robustness without sacrificing performance on clean data.

[1]  Joey Tianyi Zhou,et al.  Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Classification and Entailment , 2019, AAAI.

[2]  Omer Levy,et al.  SpanBERT: Improving Pre-training by Representing and Predicting Spans , 2019, TACL.

[3]  Quan Z. Sheng,et al.  Adversarial Attacks on Deep Learning Models in Natural Language Processing: A Survey , 2019 .

[4]  R'emi Louf,et al.  HuggingFace's Transformers: State-of-the-art Natural Language Processing , 2019, ArXiv.

[5]  Lav R. Varshney,et al.  CTRL: A Conditional Transformer Language Model for Controllable Generation , 2019, ArXiv.

[6]  Ted Briscoe,et al.  The BEA-2019 Shared Task on Grammatical Error Correction , 2019, BEA@ACL.

[7]  Yamuna Kachru,et al.  The Handbook of World Englishes , 2019 .

[8]  Peter Szolovits,et al.  Is BERT Really Robust? Natural Language Attack on Text Classification and Entailment , 2019, ArXiv.

[9]  Shikha Bordia,et al.  Identifying and Reducing Gender Bias in Word-Level Language Models , 2019, NAACL.

[10]  Jason Baldridge,et al.  PAWS: Paraphrase Adversaries from Word Scrambling , 2019, NAACL.

[11]  Myle Ott,et al.  fairseq: A Fast, Extensible Toolkit for Sequence Modeling , 2019, NAACL.

[12]  Chandler May,et al.  On Measuring Social Biases in Sentence Encoders , 2019, NAACL.

[13]  Graham Neubig,et al.  On Evaluation of Adversarial Perturbations for Sequence-to-Sequence Models , 2019, NAACL.

[14]  Iryna Gurevych,et al.  Text Processing Like Humans Do: Visually Attacking and Shielding NLP Systems , 2019, NAACL.

[15]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[16]  Ilya Sutskever,et al.  Language Models are Unsupervised Multitask Learners , 2019 .

[17]  Carlos Guestrin,et al.  Semantically Equivalent Adversarial Rules for Debugging NLP models , 2018, ACL.

[18]  Percy Liang,et al.  Know What You Don’t Know: Unanswerable Questions for SQuAD , 2018, ACL.

[19]  Myle Ott,et al.  Scaling Neural Machine Translation , 2018, WMT.

[20]  Rachel Rudinger,et al.  Gender Bias in Coreference Resolution , 2018, NAACL.

[21]  Matt Post,et al.  A Call for Clarity in Reporting BLEU Scores , 2018, WMT.

[22]  Mani B. Srivastava,et al.  Generating Natural Language Adversarial Examples , 2018, EMNLP.

[23]  Luke S. Zettlemoyer,et al.  Adversarial Example Generation with Syntactically Controlled Paraphrase Networks , 2018, NAACL.

[24]  Luke S. Zettlemoyer,et al.  AllenNLP: A Deep Semantic Natural Language Processing Platform , 2018, ArXiv.

[25]  Joshua B. Tenenbaum,et al.  A critical period for second language acquisition: Evidence from 2/3 million English speakers , 2018, Cognition.

[26]  Luke S. Zettlemoyer,et al.  Deep Contextualized Word Representations , 2018, NAACL.

[27]  Dejing Dou,et al.  HotFlip: White-Box Adversarial Examples for Text Classification , 2017, ACL.

[28]  Yonatan Belinkov,et al.  Synthetic and Natural Noise Both Break Neural Machine Translation , 2017, ICLR.

[29]  Percy Liang,et al.  Adversarial Examples for Evaluating Reading Comprehension Systems , 2017, EMNLP.

[30]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[31]  Yann Dauphin,et al.  Convolutional Sequence to Sequence Learning , 2017, ICML.

[32]  Rachael Tatman,et al.  Gender and Dialect Bias in YouTube’s Automatic Captions , 2017, EthNLP@EACL.

[33]  Ali Farhadi,et al.  Bidirectional Attention Flow for Machine Comprehension , 2016, ICLR.

[34]  J. Rickford,et al.  Language and linguistics on trial: Hearing Rachel Jeantel (and other vernacular speakers) in the courtroom and beyond , 2016 .

[35]  Dirk Hovy,et al.  The Social Impact of Natural Language Processing , 2016, ACL.

[36]  Adam Tauman Kalai,et al.  Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings , 2016, NIPS.

[37]  Jian Zhang,et al.  SQuAD: 100,000+ Questions for Machine Comprehension of Text , 2016, EMNLP.

[38]  Rico Sennrich,et al.  Neural Machine Translation of Rare Words with Subword Units , 2015, ACL.

[39]  Maja Popovic,et al.  chrF: character n-gram F-score for automatic MT evaluation , 2015, WMT@EMNLP.

[40]  Jonathon Shlens,et al.  Explaining and Harnessing Adversarial Examples , 2014, ICLR.

[41]  Joan Bruna,et al.  Intriguing properties of neural networks , 2013, ICLR.

[42]  Eneko Agirre,et al.  *SEM 2013 shared task: Semantic Textual Similarity , 2013, *SEMEVAL.

[43]  Ewan Klein,et al.  Natural Language Processing with Python , 2009 .

[44]  James Fleming,et al.  English as a Global language , 1998, Crossings: A Journal of English Studies.

[45]  H. Seymour The challenge of language assessment for african american english-speaking children: a historical perspective. , 2004, Seminars in speech and language.

[46]  Walt Wolfram,et al.  The grammar of urban African American Vernacular English , 2004 .

[47]  Lydia White,et al.  Fossilization in steady state L2 grammars: Persistent problems with inflectional morphology , 2003, Bilingualism: Language and Cognition.

[48]  B. Haznedar Missing Surface Inflection in Adult and Child L2 Acquisition , 2003 .

[49]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[50]  Lydia White,et al.  Missing Surface Inflection or Impairment in second language acquisition? Evidence from tense and agreement , 2000 .

[51]  Donna Lardiere Case and Tense in the ‘fossilized’ steady state , 1998 .