Learning and Inferring Motion Patterns using Parametric Segmental Switching Linear Dynamic Systems

Abstract Switching Linear Dynamic System (SLDS) models are a popular technique for modeling complex nonlinear dynamic systems. An SLDS can describe complex temporal patterns more concisely and accurately than an HMM by using continuous hidden states. However, the use of SLDS models in practical applications is challenging for three reasons. First, exact inference in SLDS models is computationally intractable. Second, the geometric duration model induced in standard SLDSs limits their representational power. Third, standard SLDSs do not provide a principled way to interpret systematic variations governed by higher order parameters. The contributions in this paper address all of these three challenges. First, we present a data-driven MCMC (DD-MCMC) sampling method for approximate inference in SLDSs. We show DD-MCMC provides an efficient method for estimation and learning in SLDS models. Second, we present segmental SLDSs (S-SLDS), where the geometric distributions of the switching state durations are replaced with arbitrary duration models. Third, we extend the standard SLDS model with additional global parameters that can capture systematic temporal and spatial variations. The resulting parametric SLDS model (P-SLDS) uses EM to robustly interpret parametrized motions by incorporating additional global parameters that underly systematic variations of the overall motion. The overall development of the extensions for SLDSs provide a principled framework to interpret complex motions. The framework is applied to the honey bee dance interpretation task in the context of the on-going BioTracking project at the Georgia Institute of Technology. The experimental results suggest that the enhanced models provide an effective framework for a wide range of motion analysis applications.

[1]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[2]  N E Manos,et al.  Stochastic Models , 1960, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[3]  K. Frisch The dance language and orientation of bees , 1967 .

[4]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[5]  Y. Bar-Shalom,et al.  Tracking in a cluttered environment with probabilistic data association , 1975, Autom..

[6]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[7]  Editors , 1986, Brain Research Bulletin.

[8]  Stephen E. Levinson,et al.  Continuously variable duration hidden Markov models for automatic speech recognition , 1986 .

[9]  Y. Bar-Shalom Tracking and data association , 1988 .

[10]  R. Shumway,et al.  Dynamic linear models with switching , 1991 .

[11]  Martin Russell,et al.  A segmental HMM for speech pattern modelling , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[12]  Yaakov Bar-Shalom,et al.  Estimation and Tracking: Principles, Techniques, and Software , 1993 .

[13]  Chang‐Jin Kim,et al.  Dynamic linear models with Markov-switching , 1994 .

[14]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[15]  Mari Ostendorf,et al.  From HMM's to segment models: a unified view of stochastic modeling for speech recognition , 1996, IEEE Trans. Speech Audio Process..

[16]  R. Kohn,et al.  Markov chain Monte Carlo in conditionally Gaussian state space models , 1996 .

[17]  G. Casella,et al.  Rao-Blackwellisation of sampling schemes , 1996 .

[18]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[19]  Christoph Bregler,et al.  Learning and recognizing human dynamics in video sequences , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[21]  Vladimir Pavlovic,et al.  A dynamic Bayesian network approach to figure tracking using learned dynamic models , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[22]  Zoubin Ghahramani,et al.  A Unifying Review of Linear Gaussian Models , 1999, Neural Computation.

[23]  Aaron F. Bobick,et al.  Parametric Hidden Markov Models for Gesture Recognition , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Aaron Hertzmann,et al.  Style machines , 2000, SIGGRAPH 2000.

[25]  Gautam Biswas,et al.  Bayesian Fault Detection and Diagnosis in Dynamic Systems , 2000, AAAI/IAAI.

[26]  Vladimir Pavlovic,et al.  Learning Switching Linear Models of Human Motion , 2000, NIPS.

[27]  Vladimir Pavlovic,et al.  Impact of dynamic model learning on classification of human motion , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[28]  Padhraic Smyth,et al.  Deformable Markov model templates for time-series pattern matching , 2000, KDD '00.

[29]  Michael Isard,et al.  Learning and Classification of Complex Dynamics , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Christophe Andrieu,et al.  Iterative algorithms for state estimation of jump Markov linear systems , 2001, IEEE Trans. Signal Process..

[31]  Manuela M. Veloso,et al.  Automatically tracking and analyzing the behavior of live insect colonies , 2001, AGENTS '01.

[32]  Arnaud Doucet,et al.  Particle filters for state estimation of jump Markov linear systems , 2001, IEEE Trans. Signal Process..

[33]  Terrence J. Sejnowski,et al.  Variational Learning for Switching State-Space Models , 2001 .

[34]  Brendan J. Frey,et al.  Transformation-Invariant Clustering and Dimensionality Reduction Using EM , 2001 .

[35]  Uri Lerner,et al.  Inference in Hybrid Networks: Theoretical Limits and Practical Algorithms , 2001, UAI.

[36]  Harry Shum,et al.  Motion texture: a two-level statistical model for character motion synthesis , 2002, ACM Trans. Graph..

[37]  R. Vidal,et al.  Observability and identifiability of jump linear systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[38]  Zhuowen Tu,et al.  Image Segmentation by Data-Driven Markov Chain Monte Carlo , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Petar M. Djuric,et al.  An MCMC sampling approach to estimation of nonstationary hidden Markov models , 2002, IEEE Trans. Signal Process..

[40]  D. N. Prabhakar Murthy,et al.  Wiley Series in Probability and Statistics , 2003 .

[41]  B. Frey,et al.  Transformation-Invariant Clustering Using the EM Algorithm , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Tom Heskes,et al.  Hierarchical Visualization of Time-Series Data Using Switching Linear Dynamical Systems , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Mark J. F. Gales,et al.  Rao-Blackwellised Gibbs sampling for switching linear dynamical systems , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[44]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[45]  Mun Wai Lee,et al.  Human Upper Body Pose Estimation in Static Images , 2004, ECCV.

[46]  F. Dellaert,et al.  A Rao-Blackwellized particle filter for EigenTracking , 2004, CVPR 2004.

[47]  Tucker R. Balch,et al.  Representing Honey Bee Behavior for Recognition Using Human Trainable Models , 2004, Adapt. Behav..

[48]  Tony Jebara,et al.  Dynamical Systems Trees , 2004, UAI.

[49]  Monitoring Animal Behavior in the Smart Vivarium , 2004 .

[50]  Stefano Soatto,et al.  Dynamic Textures , 2003, International Journal of Computer Vision.

[51]  Serge J. Belongie,et al.  Tracking multiple mouse contours (without too many samples) , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[52]  James M. Rehg,et al.  Data-Driven MCMC for Learning and Inference in Switching Linear Dynamic Systems , 2005, AAAI.

[53]  James M. Rehg,et al.  Learning and inference in parametric switching linear dynamic systems , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[54]  Adrian Barbu,et al.  Generalizing Swendsen-Wang to sampling arbitrary posterior probabilities , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  James M. Rehg,et al.  A Variational inference method for Switching Linear Dynamic Systems , 2005 .

[56]  Frank Dellaert,et al.  Data driven MCMC for Appearance-based Topological Mapping , 2005, Robotics: Science and Systems.

[57]  How A . I . and multi-robot systems research will accelerate our understanding of social animal behavior , 2005 .

[58]  James M. Rehg,et al.  A data-driven approach to quantifying natural human motion , 2005, ACM Trans. Graph..

[59]  Frank Dellaert,et al.  How Multirobot Systems Research will Accelerate our Understanding of Social Animal Behavior , 2006, Proceedings of the IEEE.

[60]  Frank Dellaert,et al.  MCMC Data Association and Sparse Factorization Updating for Real Time Multitarget Tracking with Merged and Multiple Measurements , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[61]  Padhraic Smyth,et al.  Segmental Hidden Markov Models with Random Effects for Waveform Modeling , 2006, J. Mach. Learn. Res..

[62]  Mun Wai Lee,et al.  A model-based approach for estimating human 3D poses in static images , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[63]  J. H. Stapleton Wiley Series in Probability and Statistics , 2007 .

[64]  Giovanni Petris,et al.  Dynamic Linear Models with R , 2009 .