QUASI-MONTE CARLO METHODS FOR HIGH-DIMENSIONAL INTEGRATION: THE STANDARD (WEIGHTED HILBERT SPACE) SETTING AND BEYOND

Abstract This paper is a contemporary review of quasi-Monte Carlo (QMC) methods, that is, equal-weight rules for the approximate evaluation of high-dimensional integrals over the unit cube [0,1]s. It first introduces the by-now standard setting of weighted Hilbert spaces of functions with square-integrable mixed first derivatives, and then indicates alternative settings, such as non-Hilbert spaces, that can sometimes be more suitable. Original contributions include the extension of the fast component-by-component (CBC) construction of lattice rules that achieve the optimal convergence order (a rate of almost 1/N, where N is the number of points, independently of dimension) to so-called “product and order dependent” (POD) weights, as seen in some recent applications. Although the paper has a strong focus on lattice rules, the function space settings are applicable to all QMC methods. Furthermore, the error analysis and construction of lattice rules can be adapted to polynomial lattice rules from the family of digital nets.

[1]  H. Niederreiter,et al.  Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .

[2]  Henryk Wozniakowski,et al.  Finite-order weights imply tractability of multivariate integration , 2004, J. Complex..

[3]  Harald Niederreiter,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2002 , 2004 .

[4]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[5]  Author addresses: , 2000 .

[6]  Henryk Wozniakowski,et al.  Liberating the dimension , 2010, J. Complex..

[7]  F. J. Hickernell Lattice rules: how well do they measure up? in random and quasi-random point sets , 1998 .

[8]  Josef Dick On the convergence rate of the component-by-component construction of good lattice rules , 2004, J. Complex..

[9]  Fred J. Hickernell,et al.  A generalized discrepancy and quadrature error bound , 1998, Math. Comput..

[10]  A. Owen,et al.  Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .

[11]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[12]  E. Hlawka Funktionen von beschränkter Variatiou in der Theorie der Gleichverteilung , 1961 .

[13]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[14]  Fred J. Hickernell,et al.  Deterministic multi-level algorithms for infinite-dimensional integration on RN , 2011, J. Complex..

[15]  H. Niederreiter Low-discrepancy and low-dispersion sequences , 1988 .

[16]  S. C. Zaremba Some applications of multidimensional integration by parts , 1968 .

[17]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[18]  Josef Dick,et al.  The construction of good extensible rank-1 lattices , 2008, Math. Comput..

[19]  H. Keng,et al.  Applications of number theory to numerical analysis , 1981 .

[20]  Frances Y. Kuo,et al.  Constructing Embedded Lattice Rules for Multivariate Integration , 2006, SIAM J. Sci. Comput..

[21]  Xiaoqun Wang,et al.  Strong tractability of multivariate integration using quasi-Monte Carlo algorithms , 2003, Math. Comput..

[22]  Henryk Wozniakowski,et al.  Intractability Results for Integration and Discrepancy , 2001, J. Complex..

[23]  Ian H. Sloan,et al.  Component-by-component construction of good lattice rules , 2002, Math. Comput..

[24]  Grzegorz W. Wasilkowski,et al.  Tractability of infinite-dimensional integration in the worst case and randomized settings , 2011, J. Complex..

[25]  P. Gruber,et al.  Funktionen von beschränkter Variation in der Theorie der Gleichverteilung , 1990 .

[26]  Benjamin J. Waterhouse,et al.  Quasi-Monte Carlo for finance applications , 2008 .

[27]  Harald Niederreiter,et al.  Monte Carlo and quasi-Monte Carlo methods 2004 , 2006 .

[28]  Grzegorz W. Wasilkowski,et al.  Randomly shifted lattice rules with the optimal rate of convergence for unbounded integrands , 2010, J. Complex..

[29]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[30]  Dirk Nuyens,et al.  Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..

[31]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[32]  Fred J. Hickernell,et al.  On tractability of weighted integration over bounded and unbounded regions in Reals , 2004, Math. Comput..

[33]  Frances Y. Kuo,et al.  Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..

[34]  Dirk Nuyens,et al.  Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points , 2006, J. Complex..

[35]  Stephen Joe,et al.  Good lattice rules based on the general weighted star discrepancy , 2007, Math. Comput..

[36]  Fred J. Hickernell,et al.  Integration and approximation in arbitrary dimensions , 2000, Adv. Comput. Math..

[37]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[38]  R. Bellman Dynamic programming. , 1957, Science.

[39]  E. Novak,et al.  Tractability of Multivariate Problems , 2008 .

[40]  Tony Warnock,et al.  Computational investigations of low-discrepancy point-sets. , 1972 .

[41]  Harald Niederreiter,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2006 , 2007 .

[42]  Aicke Hinrichs,et al.  Tractability properties of the weighted star discrepancy , 2008, J. Complex..

[43]  E. Novak,et al.  Tractability of Multivariate Problems Volume II: Standard Information for Functionals , 2010 .

[44]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[45]  I. H. SLOAN,et al.  Constructing Randomly Shifted Lattice Rules in Weighted Sobolev Spaces , 2002, SIAM J. Numer. Anal..

[46]  Fred J. Hickernell,et al.  Multi-level Monte Carlo algorithms for infinite-dimensional integration on RN , 2010, J. Complex..

[47]  Stephen Joe,et al.  Good Lattice Rules with a Composite Number of Points Based on the Product Weighted Star Discrepancy , 2008 .

[48]  Michael Gnewuch,et al.  Infinite-dimensional integration on weighted Hilbert spaces , 2012, Math. Comput..

[49]  P. Hellekalek,et al.  Random and Quasi-Random Point Sets , 1998 .

[50]  Edmund Hlawka Über die Diskrepanz mehrdimensionaler Folgen mod. 1 , 1961 .

[51]  S. Joe Construction of Good Rank-1 Lattice Rules Based on the Weighted Star Discrepancy , 2006 .

[52]  Henryk Wozniakowski,et al.  On decompositions of multivariate functions , 2009, Math. Comput..

[53]  Fred J. Hickernell,et al.  The Strong Tractability of Multivariate Integration Using Lattice Rules , 2004 .

[54]  Fred J. Hickernell,et al.  The error bounds and tractability of quasi-Monte Carlo algorithms in infinite dimension , 2002, Math. Comput..

[55]  Frances Y. Kuo,et al.  Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.

[56]  Fred J. Hickernell,et al.  On strong tractability of weighted multivariate integration , 2004, Math. Comput..

[57]  Ralf Hiptmair,et al.  Multiple point evaluation on combined tensor product supports , 2012, Numerical Algorithms.

[58]  Fred J. Hickernell,et al.  On Tractability of Weighted Integration for Certain Banach Spaces of Functions , 2004 .

[59]  Frances Y. Kuo,et al.  On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces , 2002, Math. Comput..

[60]  F. Pillichshammer,et al.  Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .

[61]  Frances Y. Kuo,et al.  Constructing Sobol Sequences with Better Two-Dimensional Projections , 2008, SIAM J. Sci. Comput..

[62]  Henryk Wozniakowski,et al.  Tractability of Multivariate Integration for Weighted Korobov Classes , 2001, J. Complex..

[63]  Pierre L'Ecuyer,et al.  Existence and construction of shifted lattice rules with an arbitrary number of points and bounded weighted star discrepancy for general decreasing weights , 2011, J. Complex..

[64]  S. Joe Formulas for the Computation of the Weighted L 2 Discrepancy , 1997 .

[65]  E. Novak,et al.  The inverse of the star-discrepancy depends linearly on the dimension , 2001 .

[66]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .