QUASI-MONTE CARLO METHODS FOR HIGH-DIMENSIONAL INTEGRATION: THE STANDARD (WEIGHTED HILBERT SPACE) SETTING AND BEYOND
暂无分享,去创建一个
[1] H. Niederreiter,et al. Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .
[2] Henryk Wozniakowski,et al. Finite-order weights imply tractability of multivariate integration , 2004, J. Complex..
[3] Harald Niederreiter,et al. Monte Carlo and Quasi-Monte Carlo Methods 2002 , 2004 .
[4] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[5] Author addresses: , 2000 .
[6] Henryk Wozniakowski,et al. Liberating the dimension , 2010, J. Complex..
[7] F. J. Hickernell. Lattice rules: how well do they measure up? in random and quasi-random point sets , 1998 .
[8] Josef Dick. On the convergence rate of the component-by-component construction of good lattice rules , 2004, J. Complex..
[9] Fred J. Hickernell,et al. A generalized discrepancy and quadrature error bound , 1998, Math. Comput..
[10] A. Owen,et al. Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .
[11] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[12] E. Hlawka. Funktionen von beschränkter Variatiou in der Theorie der Gleichverteilung , 1961 .
[13] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[14] Fred J. Hickernell,et al. Deterministic multi-level algorithms for infinite-dimensional integration on RN , 2011, J. Complex..
[15] H. Niederreiter. Low-discrepancy and low-dispersion sequences , 1988 .
[16] S. C. Zaremba. Some applications of multidimensional integration by parts , 1968 .
[17] Ilya M. Sobol,et al. Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .
[18] Josef Dick,et al. The construction of good extensible rank-1 lattices , 2008, Math. Comput..
[19] H. Keng,et al. Applications of number theory to numerical analysis , 1981 .
[20] Frances Y. Kuo,et al. Constructing Embedded Lattice Rules for Multivariate Integration , 2006, SIAM J. Sci. Comput..
[21] Xiaoqun Wang,et al. Strong tractability of multivariate integration using quasi-Monte Carlo algorithms , 2003, Math. Comput..
[22] Henryk Wozniakowski,et al. Intractability Results for Integration and Discrepancy , 2001, J. Complex..
[23] Ian H. Sloan,et al. Component-by-component construction of good lattice rules , 2002, Math. Comput..
[24] Grzegorz W. Wasilkowski,et al. Tractability of infinite-dimensional integration in the worst case and randomized settings , 2011, J. Complex..
[25] P. Gruber,et al. Funktionen von beschränkter Variation in der Theorie der Gleichverteilung , 1990 .
[26] Benjamin J. Waterhouse,et al. Quasi-Monte Carlo for finance applications , 2008 .
[27] Harald Niederreiter,et al. Monte Carlo and quasi-Monte Carlo methods 2004 , 2006 .
[28] Grzegorz W. Wasilkowski,et al. Randomly shifted lattice rules with the optimal rate of convergence for unbounded integrands , 2010, J. Complex..
[29] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[30] Dirk Nuyens,et al. Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..
[31] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[32] Fred J. Hickernell,et al. On tractability of weighted integration over bounded and unbounded regions in Reals , 2004, Math. Comput..
[33] Frances Y. Kuo,et al. Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..
[34] Dirk Nuyens,et al. Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points , 2006, J. Complex..
[35] Stephen Joe,et al. Good lattice rules based on the general weighted star discrepancy , 2007, Math. Comput..
[36] Fred J. Hickernell,et al. Integration and approximation in arbitrary dimensions , 2000, Adv. Comput. Math..
[37] A. Stroud. Approximate calculation of multiple integrals , 1973 .
[38] R. Bellman. Dynamic programming. , 1957, Science.
[39] E. Novak,et al. Tractability of Multivariate Problems , 2008 .
[40] Tony Warnock,et al. Computational investigations of low-discrepancy point-sets. , 1972 .
[41] Harald Niederreiter,et al. Monte Carlo and Quasi-Monte Carlo Methods 2006 , 2007 .
[42] Aicke Hinrichs,et al. Tractability properties of the weighted star discrepancy , 2008, J. Complex..
[43] E. Novak,et al. Tractability of Multivariate Problems Volume II: Standard Information for Functionals , 2010 .
[44] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[45] I. H. SLOAN,et al. Constructing Randomly Shifted Lattice Rules in Weighted Sobolev Spaces , 2002, SIAM J. Numer. Anal..
[46] Fred J. Hickernell,et al. Multi-level Monte Carlo algorithms for infinite-dimensional integration on RN , 2010, J. Complex..
[47] Stephen Joe,et al. Good Lattice Rules with a Composite Number of Points Based on the Product Weighted Star Discrepancy , 2008 .
[48] Michael Gnewuch,et al. Infinite-dimensional integration on weighted Hilbert spaces , 2012, Math. Comput..
[49] P. Hellekalek,et al. Random and Quasi-Random Point Sets , 1998 .
[50] Edmund Hlawka. Über die Diskrepanz mehrdimensionaler Folgen mod. 1 , 1961 .
[51] S. Joe. Construction of Good Rank-1 Lattice Rules Based on the Weighted Star Discrepancy , 2006 .
[52] Henryk Wozniakowski,et al. On decompositions of multivariate functions , 2009, Math. Comput..
[53] Fred J. Hickernell,et al. The Strong Tractability of Multivariate Integration Using Lattice Rules , 2004 .
[54] Fred J. Hickernell,et al. The error bounds and tractability of quasi-Monte Carlo algorithms in infinite dimension , 2002, Math. Comput..
[55] Frances Y. Kuo,et al. Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.
[56] Fred J. Hickernell,et al. On strong tractability of weighted multivariate integration , 2004, Math. Comput..
[57] Ralf Hiptmair,et al. Multiple point evaluation on combined tensor product supports , 2012, Numerical Algorithms.
[58] Fred J. Hickernell,et al. On Tractability of Weighted Integration for Certain Banach Spaces of Functions , 2004 .
[59] Frances Y. Kuo,et al. On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces , 2002, Math. Comput..
[60] F. Pillichshammer,et al. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .
[61] Frances Y. Kuo,et al. Constructing Sobol Sequences with Better Two-Dimensional Projections , 2008, SIAM J. Sci. Comput..
[62] Henryk Wozniakowski,et al. Tractability of Multivariate Integration for Weighted Korobov Classes , 2001, J. Complex..
[63] Pierre L'Ecuyer,et al. Existence and construction of shifted lattice rules with an arbitrary number of points and bounded weighted star discrepancy for general decreasing weights , 2011, J. Complex..
[64] S. Joe. Formulas for the Computation of the Weighted L 2 Discrepancy , 1997 .
[65] E. Novak,et al. The inverse of the star-discrepancy depends linearly on the dimension , 2001 .
[66] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .