Aspects of Split Supersymmetry

We explore some fundamental differences in the phenomenology, cosmology and model building of Split Supersymmetry compared with traditional low-scale supersymmetry. We show how the mass spectrum of Split Supersymmetry naturally emerges from theories where the dominant source of supersymmetry breaking preserves an R symmetry, characterize the class of theories where the unavoidable R-breaking by gravity can be neglected, and point out a new possibility, where supersymmetry breaking is directly communicated at tree level to the visible sector via renormalizable interactions. Next, we discuss possible low-energy signals for Split Supersymmetry. The absence of new light scalars removes all the phenomenological difficulties of low-energy supersymmetry, associated with one-loop flavor and CP violating effects. However, the electric dipole moments of leptons and quarks do arise at two loops, and are automatically at the level of present limits with no need for small phases, making them accessible to several ongoing new-generation experiments. We also study proton decay in the context of Split Supersymmetry, and point out scenarios where the dimension-six induced decays may be observable. Finally, we show that the novel spectrum of Split Supersymmetry opens up new possibilities for the generation of dark matter, as the decays of ultraheavy gravitinos in the early universe typically increase the abundance of the lightest neutralino above its usual freeze-out value. This allows for lighter gauginos and Higgsinos, more accessible both to the LHC and to dark-matter detection experiments.

[1]  P. Langacker Grand unified theories and proton decay , 1981 .

[2]  E. Commins,et al.  New limit on the electron electric dipole moment. , 2002, Physical review letters.

[3]  J. L. Lopez,et al.  Astrophysical constraints on massive unstable neutral relic particles , 1992 .

[4]  Phenomenological Consequences of Supersymmetry with Anomaly-Induced Masses , 1999, hep-ph/9904378.

[5]  W. Keung,et al.  Erratum: New Two-Loop Contribution to Electric Dipole Moments in Supersymmetric Theories [Phys. Rev. Lett. 82, 900 (1999)] , 1999 .

[6]  The statistics of string/M theory vacua , 2003, hep-th/0303194.

[7]  H. Goldberg,et al.  Constraint on the photino mass from cosmology , 1983 .

[8]  N. Suzuki,et al.  The Cosmological Baryon Density from the Deuterium-to-Hydrogen Ratio in QSO Absorption Systems: D/H toward Q1243+3047 , 2003, astro-ph/0302006.

[9]  G. Giudice,et al.  A natural solution to the μ-problem in supergravity theories , 1988 .

[10]  J. Ellis,et al.  On the effective Lagrangian for baryon decay , 1979 .

[11]  Zee,et al.  Electric dipole moment of the electron and of the neutron. , 1990, Physical review letters.

[12]  Minoru Yoshida,et al.  The JHF-Kamioka neutrino project , 2001 .

[13]  Hitoshi Murayama,et al.  Gaugino mass without singlets , 1998 .

[14]  Updated Nucleosynthesis Constraints on Unstable Relic Particles , 2002, astro-ph/0211258.

[15]  Weinberg,et al.  Larger Higgs-boson-exchange terms in the neutron electric dipole moment. , 1989, Physical review letters.

[16]  R. Barbieri,et al.  Dark Matter Neutralinos in Supergravity Theories , 1989 .

[17]  Hierarchies from fluxes in string compactifications , 2001, hep-th/0105097.

[18]  Hadronic decay of late-decaying particles and big-bang nucleosynthesis , 2004, astro-ph/0402490.

[19]  T. Thuan,et al.  Systematic Effects and a New Determination of the Primordial Abundance of 4He and dY/dZ from Observations of Blue Compact Galaxies , 2003, astro-ph/0310421.

[20]  F. Denef,et al.  Distributions of flux vacua , 2004, hep-th/0404116.

[21]  Gravitino Production in the Inflationary Universe and the Effects on Big-Bang Nucleosynthesis , 1994, hep-ph/9403364.

[22]  M. Douglas,et al.  Basic results in vacuum statistics , 2004, hep-th/0409207.

[23]  F. Bay,et al.  Progress towards measuring the electric dipole moment of the electron in metastable PbO , 2004 .

[24]  A. Penzo,et al.  A New measurement of the spin dependent structure function g1(x) of the deuteron , 1995 .

[25]  D. Seckel,et al.  Primordial nucleosynthesis: The effects of injecting hadrons. , 1988, Physical review. D, Particles and fields.

[26]  Weinberg,et al.  Anthropic bound on the cosmological constant. , 1987, Physical review letters.

[27]  Nelson,et al.  Dynamical supersymmetry breaking at low energies. , 1993, Physical review. D, Particles and fields.

[28]  Yuan,et al.  Evolution of Weinberg's gluonic CP-violation operator. , 1990, Physical review letters.

[29]  T. Gherghetta,et al.  Nucleosynthesis bounds in gauge-mediated supersymmetry breaking theories , 1998 .

[30]  G. Degrassi,et al.  QED logarithms in the electroweak corrections to the muon anomalous magnetic moment , 1998 .

[31]  A. Rubbia Very massive underground detectors for proton decay searches , 2004, hep-ph/0407297.

[32]  Y. Semertzidis Electric dipole moments of fundamental particles , 2004, hep-ex/0401016.

[33]  J. Gunion,et al.  Using back scattered laser beams to detect CP violation in the neutral Higgs sector , 1992, hep-ph/9206262.

[34]  Savas Dimopoulos,et al.  Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC , 2004, hep-th/0405159.

[35]  G. Starkman,et al.  Limits on Late Decaying Particles From Nucleosynthesis , 1989 .

[36]  C. Muñoz Enhancement factors for supersymmetric proton decay in SU(5) and SO(10) with superfield techniques , 1986 .

[37]  Andrea Romanino,et al.  Erratum to: "Split supersymmetry" [Nucl. Phys. B 699 (2004) 65] , 2005 .

[38]  E. Hinds,et al.  Measurement of the electron electric dipole moment using YbF molecules. , 2002, Physical review letters.

[39]  Counting flux vacua , 2003, hep-th/0307049.

[40]  T. Plehn,et al.  Split supersymmetry at colliders , 2004, hep-ph/0507137.

[41]  C. Hogan Why the Universe is Just So , 1999, astro-ph/9909295.

[42]  R. Rattazzi,et al.  Theories with Gauge-Mediated Supersymmetry Breaking , 1998, hep-ph/9801271.

[43]  Gian Francesco Giudice,et al.  Largest temperature of the radiation era and its cosmological implications , 2001 .

[44]  S. Lamoreaux Solid-state systems for the electron electric dipole moment and other fundamental measurements , 2001, nucl-ex/0109014.

[45]  Gravitino dark matter in the CMSSM , 2003, hep-ph/0312262.

[46]  Apostolos Pilaftsis,et al.  a Fermi National Accelerator Laboratory FERMILAB-Pub-9 X 347-T New Two-Loop Contribution to Electric Dipole Moment in Supersymmetric Theories , 1999 .

[47]  F. Wilczek,et al.  Supersymmetry and the Scale of Unification , 1981 .

[48]  L. Susskind The Anthropic Landscape of String Theory , 2003, hep-th/0302219.

[49]  M. Fukugita,et al.  Nucleon decay matrix elements from lattice QCD , 1999, hep-lat/9911026.

[50]  Shamit Kachru,et al.  De Sitter vacua in string theory , 2003, hep-th/0301240.

[51]  A. Brandenburg,et al.  Thermal production of gravitinos , 2001 .

[52]  Jay G. Wacker,et al.  One loop predictions of the finely tuned supersymmetric standard model , 2004 .

[53]  F. Wilczek,et al.  Operator Analysis of Nucleon Decay , 1979 .

[54]  Dark matter in the finely tuned minimal supersymmetric standard model , 2004, hep-ph/0406144.

[55]  Andrei Linde,et al.  Is it easy to save the gravitino? , 1984 .

[56]  F. Quevedo,et al.  On the explicit construction and statistics of Calabi-Yau flux vacua , 2004, hep-th/0409215.

[57]  J. Hewett,et al.  Signatures of long-lived gluinos in split supersymmetry , 2004, hep-ph/0408248.

[58]  P. Tripathy,et al.  Taxonomy of flux vacua , 2004, hep-th/0404243.

[59]  Predictions from quantum cosmology. , 1994, Physical review letters.

[60]  Pierre Fayet,et al.  Scattering cross sections of the photino and the goldstino (gravitino) on matter , 1979 .

[61]  Gravitino dark matter in the CMSSM and implications for leptogenesis and the LHC , 2004, hep-ph/0408227.

[62]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[63]  L. Ibáñez,et al.  Enhancement factors for supersymmetric proton decay in the Wess-Zumino gauge , 1984 .

[64]  W. Keung,et al.  Constraints from electric dipole moments on chargino baryogenesis in the minimal supersymmetric standard model , 2002 .

[65]  H. Murayama,et al.  Cosmological constraints on the light stable gravitino , 1993 .

[66]  E. Silverstein,et al.  De Sitter Space In Non-Critical String Theory , 2002, hep-th/0205316.

[67]  Chargino pair production at linear collider and split supersymmetry , 2004, hep-ph/0407072.

[68]  J. Ellis,et al.  Cosmological gravitino regeneration and decay , 1984 .

[69]  L. Girardello,et al.  General mass formula in broken supersymmetry , 1979 .

[70]  Superconformal symmetry, supergravity and cosmology , 2000, hep-th/0006179.

[71]  Low energy dynamical supersymmetry breaking simplified. , 1994, Physical review. D, Particles and fields.

[72]  A. Zee,et al.  Erratum: ``Electric dipole moment of the electron and of the neutron'' [Phys. Rev. Lett. 65, 21 (199 , 1990 .

[73]  M. Rees Numerical Coincidences and `Tuning' in Cosmology , 2003, astro-ph/0401424.

[74]  K. Kohri Primordial nucleosynthesis and hadronic decay of a massive particle with a relatively short lifetime , 2001, astro-ph/0103411.

[75]  B. Fields,et al.  On the Evolution of Helium in Blue Compact Galaxies , 1998, astro-ph/9803297.

[76]  Dimitri V. Nanopoulos,et al.  Aspects of the flipped unification of strong, weak and electromagnetic interactions , 1978 .

[77]  Jonathan L. Feng,et al.  Supergravity with a gravitino lightest supersymmetric particle , 2004 .

[78]  Quantization of four-form fluxes and dynamical neutralization of the cosmological constant , 2000, hep-th/0004134.

[79]  Apostolos Pilaftsis,et al.  Higgs-Mediated Electric Dipole Moments in the MSSM: An Application to Baryogenesis and Higgs Searches , 2002, hep-ph/0207277.

[80]  M. E. Sainio,et al.  Sigma term update , 1991 .

[81]  Electric dipole moments as a test of supersymmetric unification , 1994, hep-ph/9411273.

[82]  Lisa Randall,et al.  Out of this world supersymmetry breaking , 1999 .

[83]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[84]  W. Israel in 300 Years of Gravitation , 1988 .

[85]  M. Binger Higgs boson mass in split supersymmetry at two-loops , 2004, hep-ph/0408240.

[86]  T. Banks TCP, quantum gravity, the cosmological constant and all that... , 1985 .

[87]  Manuel Drees,et al.  Systematic study of the impact of CP-violating phases of the minimal supersymmetric standard model on leptonic high-energy observables , 2004 .

[88]  Savas Dimopoulos,et al.  Softly Broken Supersymmetry and SU(5) , 1981 .