Joint communication and positioning based on soft channel parameter estimation

A joint communication and positioning system based on maximum-likelihood channel parameter estimation is proposed. The parameters of the physical channel, needed for positioning, and the channel coefficients of the equivalent discrete-time channel model, needed for communication, are estimated jointly using a priori information about pulse shaping and receive filtering. The paper focusses on the positioning part of the system. It is investigated how soft information for the parameter estimates can be obtained. On the basis of confidence regions, two methods for obtaining soft information are proposed. The accuracy of these approximative methods depends on the nonlinearity of the parameter estimation problem, which is analyzed by so-called curvature measures. The performance of the two methods is investigated by means of Monte Carlo simulations. The results are compared with the Cramer-Rao lower bound. It is shown that soft information aids the positioning. Negative effects caused by multipath propagation can be mitigated significantly even without oversampling.

[1]  Simon Plass,et al.  The WHERE Project – Combining Wireless Communications and Navigation , 2008 .

[2]  Chia-Chin Chong,et al.  NLOS Identification and Weighted Least-Squares Localization for UWB Systems Using Multipath Channel Statistics , 2008, EURASIP J. Adv. Signal Process..

[3]  Arogyaswami Paulraj,et al.  GMSK linearization and structured channel estimate for GSM signals , 1997, MILCOM 97 MILCOM 97 Proceedings.

[4]  Elliott D. Kaplan Understanding GPS : principles and applications , 1996 .

[5]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[6]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[7]  James Kennedy,et al.  Defining a Standard for Particle Swarm Optimization , 2007, 2007 IEEE Swarm Intelligence Symposium.

[8]  Ehud Weinstein,et al.  Parameter estimation of superimposed signals using the EM algorithm , 1988, IEEE Trans. Acoust. Speech Signal Process..

[9]  Kaveh Pahlavan,et al.  Wireless Information Networks , 1995 .

[10]  Robert B. Schnabel,et al.  Computational experience with confidence intervals for nonlinear least squares , 1986 .

[11]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[12]  Patrick Robertson,et al.  The soft-output principle - reminiscences and new developments , 2007, Eur. Trans. Telecommun..

[13]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[14]  Gregory E. Bottomley,et al.  Improved channel estimation with side information , 1997, 1997 IEEE 47th Vehicular Technology Conference. Technology in Motion.

[15]  Xiaodong Li,et al.  Swarm Intelligence in Optimization , 2008, Swarm Intelligence.

[16]  D. G. Watts,et al.  Relative Curvature Measures of Nonlinearity , 1980 .

[17]  Peter A. Hoeher,et al.  Joint channel and parameter estimation for combined communication and navigation using particle swarm optimization , 2010, 2010 7th Workshop on Positioning, Navigation and Communication.

[18]  Klaus I. Pedersen,et al.  Channel parameter estimation in mobile radio environments using the SAGE algorithm , 1999, IEEE J. Sel. Areas Commun..

[19]  A.H. Sayed,et al.  Network-based wireless location: challenges faced in developing techniques for accurate wireless location information , 2005, IEEE Signal Processing Magazine.

[20]  Wing-Kin Ma,et al.  A Constrained Least Squares Approach to Mobile Positioning: Algorithms and Optimality , 2006, EURASIP J. Adv. Signal Process..

[21]  Kaveh Pahlavan,et al.  Wireless Information Networks: Pahlavan/Wireless Information Networks, Second Edition , 2005 .

[22]  E. Biscaia,et al.  Nonlinear parameter estimation through particle swarm optimization , 2008 .

[23]  Gregory J. Pottie,et al.  Fast adaptive equalization/diversity combining for time-varying dispersive channels , 1998, IEEE Trans. Commun..

[24]  R. Langley Dilution of Precision , 1999 .

[25]  R.S. Thoma,et al.  Maximum likelihood channel parameter estimation from multidimensional channel sounding measurements , 2003, The 57th IEEE Semiannual Vehicular Technology Conference, 2003. VTC 2003-Spring..

[26]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[27]  Christian Blum,et al.  Swarm Intelligence: Introduction and Applications , 2008, Swarm Intelligence.

[28]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .