Deeply Pipelined Digit-Serial LDPC Decoding

Highly parallel VLSI implementations of low-density parity-check (LDPC) decoders have a large number of interconnections, which can result in designs with low logic density. Bit-serial architectures have been developed that reduce the number of wires needed, however, they do not fully realize the potential for deeply pipelined serial data processing. Digit- online arithmetic allows operations to be performed in a serial, digit-by-digit manner, making it ideal for use in implementing a digit-serial LDPC decoder. Digit-online circuits for the primitive operations required for an offset min-sum LDPC decoder are simple, and allow deep pipelining at the digit level. A new hardware architecture for LDPC decoding is demonstrated, using redundant number systems for the internal representation of values. We present post-layout decoder results for the (2048, 1723) 10GBASE-T LDPC code in a general-purpose 65 nm CMOS technology. The decoder requires a core area of 10.89 mm and operates at a clock frequency of 980 MHz. The decoder can simultaneously decode two 4-bit frames at 41.8 Gbit/s or one 10-bit frame at 20.9 Gbit/s.

[1]  Shie Mannor,et al.  Majority-Based Tracking Forecast Memories for Stochastic LDPC Decoding , 2010, IEEE Transactions on Signal Processing.

[2]  Frank R. Kschischang,et al.  A bit-serial approximate min-sum LDPC decoder and FPGA implementation , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[3]  Algirdas Avizienis,et al.  Signed-Digit Numbe Representations for Fast Parallel Arithmetic , 1961, IRE Trans. Electron. Comput..

[4]  Tong Zhang,et al.  Block-LDPC: a practical LDPC coding system design approach , 2005, IEEE Trans. Circuits Syst. I Regul. Pap..

[5]  Robert Michael Owens Techniques to Reduce the Inherent Limitations of Fully Digit On-Line Arithmetic , 1983, IEEE Transactions on Computers.

[6]  A. Avizeinis,et al.  Signed Digit Number Representations for Fast Parallel Arithmetic , 1961 .

[7]  Zhongfeng Wang,et al.  Flexible LDPC Decoder Design for Multigigabit-per-Second Applications , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  Yeong-Luh Ueng,et al.  A Multimode Shuffled Iterative Decoder Architecture for High-Rate RS-LDPC Codes , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[9]  N. Takagi,et al.  A high-speed multiplier using a redundant binary adder tree , 1987 .

[10]  Mohamad Sawan,et al.  Delayed Stochastic Decoding of LDPC Codes , 2011, IEEE Transactions on Signal Processing.

[11]  Frank R. Kschischang,et al.  Multi-Gbit/sec low density parity check decoders with reduced interconnect complexity , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[12]  Martin J. Wainwright,et al.  An Efficient 10GBASE-T Ethernet LDPC Decoder Design With Low Error Floors , 2010, IEEE Journal of Solid-State Circuits.

[13]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[14]  A. J. Blanksby,et al.  A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-check code decoder , 2001, IEEE J. Solid State Circuits.

[15]  Vincent C. Gaudet,et al.  Degree-Matched Check Node Decoding for Regular and Irregular LDPCs , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[16]  Tinoosh Mohsenin,et al.  A Low-Complexity Message-Passing Algorithm for Reduced Routing Congestion in LDPC Decoders , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  Frank R. Kschischang,et al.  Power Reduction Techniques for LDPC Decoders , 2008, IEEE Journal of Solid-State Circuits.

[18]  A. Blanksby,et al.  A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-check code decoder , 2001, IEEE J. Solid State Circuits.

[19]  Jinghu Chen,et al.  Density evolution for BP-based decoding algorithms of LDPC codes and their quantized versions , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[20]  Bruce F. Cockburn,et al.  A scalable LDPC decoder ASIC architecture with bit-serial message exchange , 2008, Integr..

[21]  Mitchell A. Thornton,et al.  Signed Binary Addition Circuitry with Inherent Even Parity Outputs , 1997, IEEE Trans. Computers.

[22]  G. Baccarani,et al.  Generalized scaling theory and its application to a ¼ micrometer MOSFET design , 1984, IEEE Transactions on Electron Devices.

[23]  Milos D. Ercegovac,et al.  On-Line Arithmetic: An Overview , 1984, Optics & Photonics.

[24]  Keshab K. Parhi,et al.  Overlapped message passing for quasi-cyclic low-density parity check codes , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[25]  Mary Jane Irwin,et al.  Digit-Pipelined Arnthmetic as Illustrated by the Paste-Up System: A Tutorial , 1987, Computer.

[26]  Tong Zhang,et al.  On finite precision implementation of low density parity check codes decoder , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).