On Partitioning Multivariate Self-Affine Time Series

Given a multivariate time series, possibly of high dimension, with unknown and time-varying joint distribution, it is of interest to be able to completely partition the time series into disjoint, contiguous subseries, each of which has different distributional or pattern attributes from the preceding and succeeding subseries. An additional feature of many time series is that they display self-affinity, so that subseries at one time scale are similar to subseries at another after application of an affine transformation. Such qualities are observed in time series from many disciplines, including biology, medicine, economics, finance, and computer science. This paper defines the relevant multiobjective combinatorial optimization problem with limited assumptions as a biobjective one, and a specialized evolutionary algorithm is presented which finds optimal self-affine time series partitionings with a minimum of choice parameters. The algorithm not only finds partitionings for all possible numbers of partitions given data constraints, but also for self-affinities between these partitionings and some fine-grained partitioning. The resulting set of Pareto-efficient solution sets provides a rich representation of the self-affine properties of a multivariate time series at different locations and time scales.

[1]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[2]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[3]  R. Mantegna Hierarchical structure in financial markets , 1998, cond-mat/9802256.

[4]  Laurent E. Calvet,et al.  Multifractal Volatility: Theory, Forecasting, and Pricing , 2008 .

[5]  Tomaso Aste,et al.  Anomalous volatility scaling in high frequency financial data , 2015, 1503.08465.

[6]  Ruipeng Liu,et al.  Multivariate multifractal models : estimation of parameters and applications to risk management , 2008 .

[7]  Darrell Whitley,et al.  The Island Model Genetic Algorithm: On Separability, Population Size and Convergence , 2015, CIT 2015.

[8]  Lars Black Mogensen,et al.  Models of Changing Volatility: A Multifractal Approach , 2011 .

[9]  Thomas Lux,et al.  Higher dimensional multifractal processes : a GMM approach , 2010 .

[10]  Realized Volatility Versus GARCH and Stochastic Volatility Models. The Evidence from the WIG20 Index and the EUR/PLN Foreign Exchange Market , 2010 .

[11]  Adriana S. Cordis,et al.  Discrete Stochastic Autoregressive Volatility , 2014 .

[12]  G. C. Tiao,et al.  Use of Cumulative Sums of Squares for Retrospective Detection of Changes of Variance , 1994 .

[13]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[14]  René Garcia,et al.  Série Scientifique Scientific Series an Analysis of the Real Interest Rate under Regime Shifts , 2022 .

[15]  Fabrizio Lillo,et al.  Correlation, Hierarchies, and Networks in Financial Markets , 2008, 0809.4615.

[16]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[17]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[18]  L F Richardson,et al.  The problem of contiguity : An appendix to statistics of deadly quarrels , 1961 .

[19]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[20]  J. Idier Long-term vs. short-term comovements in stock markets: the use of Markov-switching multifractal models , 2008 .

[21]  Josep Lluís Carrión i Silvestre,et al.  Testing for changes in the unconditional variance of financial time series , 2004 .

[22]  Robert F. Cahalan,et al.  The Landsat Scale Break in Stratocumulus as a Three-Dimensional Radiative Transfer Effect: Implications for Cloud Remote Sensing , 1997 .

[23]  James D. Hamilton A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle , 1989 .

[24]  Laurent E. Calvet,et al.  Forecasting Multifractal Volatility , 1999 .

[25]  Thomas Lux,et al.  The Markov-Switching Multifractal Model of Asset Returns , 2008 .

[26]  T. Kaizoji,et al.  Forecasting volatility and volume in the Tokyo stock market: Long memory, fractality and regime switching , 2007 .

[27]  Joshua D. Knowles,et al.  An Evolutionary Approach to Multiobjective Clustering , 2007, IEEE Transactions on Evolutionary Computation.

[28]  G. Didier,et al.  Wavelet estimation for operator fractional Brownian motion , 2015, 1501.06094.

[29]  Fei Chen,et al.  A Markov-Switching Multifractal Inter-Trade Duration Model, with Application to US Equities , 2013 .

[30]  F. Diebold,et al.  A Markov-Switching Multi-Fractal Inter-Trade Duration Model, with Application to U.S. Equities , 2012 .

[31]  T Watson Layne,et al.  A Genetic Algorithm Approach to Cluster Analysis , 1998 .

[32]  Laurent E. Calvet,et al.  A Multifractal Model of Asset Returns , 1997 .

[33]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .

[34]  M. Wohar,et al.  IDENTIFYING REGIME CHANGES IN MARKET VOLATILITY , 2006 .

[35]  J. Idier (Re)correlation: A Markov Switching Multifractal Model with Time Varying Correlations , 2009 .

[36]  B. Mandelbrot How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension , 1967, Science.

[37]  James D. Hamilton Analysis of time series subject to changes in regime , 1990 .

[38]  T. Lux,et al.  Non-homogeneous volatility correlations in the bivariate multifractal model , 2015 .

[39]  S. Turnbull,et al.  Pricing foreign currency options with stochastic volatility , 1990 .

[40]  N. Shephard,et al.  Estimating quadratic variation using realized variance , 2002 .

[41]  T. Warren Liao,et al.  Clustering of time series data - a survey , 2005, Pattern Recognit..

[42]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[43]  Tiziana di Matteo,et al.  Hierarchical Information Clustering by Means of Topologically Embedded Graphs , 2011, PloS one.

[44]  B. Mandelbrot The Variation of Some Other Speculative Prices , 1967 .

[45]  Ujjwal Maulik,et al.  Genetic algorithm-based clustering technique , 2000, Pattern Recognit..

[46]  B. Mandelbrot The Variation of Certain Speculative Prices , 1963 .

[47]  Donatien Hainaut A Fractal Version of the Hull-White Interest Rate Model , 2012 .

[48]  T. Aste,et al.  Dependency structure and scaling properties of financial time series are related , 2013, Scientific Reports.

[49]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[50]  Xin Zhao,et al.  Modeling Complicated Behavior of Stock Prices Using Discrete Self-Excited Multifractal Process , 2012 .

[51]  T. Lux,et al.  Flexible and Robust Modelling of Volatility Comovements: A Comparison of Two Multifractal Models , 2010 .

[52]  Lothar Thiele,et al.  A Mathematical Analysis of Tournament Selection , 1995, ICGA.

[53]  N. Shephard,et al.  Econometric Analysis of Realised Covariation: High Frequency Covariance, Regression and Correlation in Financial Economics , 2002 .

[54]  E. Fama Mandelbrot and the Stable Paretian Hypothesis , 1963 .

[55]  Jon D. Pelletier,et al.  Self-Affine Time Series: II. Applications and Models , 1999 .

[56]  James D. Hamilton Rational-expectations econometric analysis of changes in regime: An investigation of the term structure of interest rates , 1988 .

[57]  F. Diebold,et al.  (Understanding, Optimizing, Using and Forecasting) Realized Volatility and Correlation * , 1999 .

[58]  Francis X. Diebold,et al.  A Markov-switching multifractal inter-trade duration model, with application to US equities , 2013 .

[59]  Eamonn J. Keogh,et al.  An online algorithm for segmenting time series , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[60]  T. Aste,et al.  Understanding the source of multifractality in financial markets , 2012, 1201.1535.

[61]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[62]  M. Rypdal,et al.  Multifractal modeling of short-term interest rates , 2011, 1111.5265.

[63]  N. Shephard,et al.  Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics , 2004 .

[64]  Marco Laumanns,et al.  Running time analysis of multiobjective evolutionary algorithms on pseudo-Boolean functions , 2004, IEEE Transactions on Evolutionary Computation.

[65]  G. Didier,et al.  Integral representations and properties of operator fractional Brownian motions , 2011, 1102.1822.

[66]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .