Nonlinear Theory for Coalescing Characteristics in Multiphase Whitham Modulation Theory

The multiphase Whitham modulation equations with N phases have 2N characteristics which may be of hyperbolic or elliptic type. In this paper, a nonlinear theory is developed for coalescence, where two characteristics change from hyperbolic to elliptic via collision. Firstly, a linear theory develops the structure of colliding characteristics involving the topological sign of characteristics and multiple Jordan chains, and secondly, a nonlinear modulation theory is developed for transitions. The nonlinear theory shows that coalescing characteristics morph the Whitham equations into an asymptotically valid geometric form of the two-way Boussinesq equation, that is, coalescing characteristics generate dispersion, nonlinearity and complex wave fields. For illustration, the theory is applied to coalescing characteristics associated with the modulation of two-phase travelling wave solutions of coupled nonlinear Schrödinger equations, highlighting how collisions can be identified and the relevant dispersive dynamics constructed.

[1]  Leiba Rodman,et al.  Spectral analysis of selfadjoint matrix polynomials , 1980 .

[2]  Ryogo Hirota,et al.  Exact N‐soliton solutions of the wave equation of long waves in shallow‐water and in nonlinear lattices , 1973 .

[3]  T. Bridges,et al.  A proof of validity for multiphase Whitham modulation theory , 2020, Proceedings of the Royal Society A.

[4]  P. Alam,et al.  H , 1887, High Explosives, Propellants, Pyrotechnics.

[5]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[6]  G. Whitham A general approach to linear and non-linear dispersive waves using a Lagrangian , 1965, Journal of Fluid Mechanics.

[7]  Jan Cornelis van der Meer,et al.  The Hamiltonian Hopf Bifurcation , 1985 .

[8]  Nonlinear multiphase deep‐water wavetrains , 1976 .

[9]  D. Ratliff Double Degeneracy in Multiphase Modulation and the Emergence of the Boussinesq Equation , 2018 .

[10]  T. Bridges Symmetry, Phase Modulation and Nonlinear Waves , 2017 .

[11]  Phase dynamics of periodic wavetrains leading to the 5th order KP equation , 2017 .

[12]  David W. McLaughlin,et al.  Multiphase averaging and the inverse spectral solution of the Korteweg—de Vries equation , 1980 .

[13]  T. Bridges,et al.  Reduction to modified KdV and its KP-like generalization via phase modulation , 2018, Nonlinearity.

[14]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[15]  P. Kevrekidis,et al.  Solitons in coupled nonlinear Schrödinger models: A survey of recent developments , 2016 .

[16]  T. Bridges,et al.  Multisymplectic structures and the variational bicomplex , 2009, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  M. A. Hoefer,et al.  Shock Waves in Dispersive Hydrodynamics with Nonconvex Dispersion , 2016, SIAM J. Appl. Math..

[18]  T. Bridges,et al.  Krein signature and Whitham modulation theory: the sign of characteristics and the “sign characteristic” , 2019, Studies in Applied Mathematics.

[19]  D. Ratliff,et al.  Dispersive dynamics in the characteristic moving frame , 2018, Proceedings of the Royal Society A.

[20]  V. Mehrmann,et al.  On the sign characteristics of Hermitian matrix polynomials , 2016 .

[21]  T. Bridges,et al.  Nonlinear modulation near the Lighthill instability threshold in 2+1 Whitham theory , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  M. Ablowitz,et al.  Interacting nonlinear wave envelopes and rogue wave formation in deep water , 2014, 1407.5077.

[23]  D. J. Benney,et al.  The Evolution of Multi-Phase Modes for Nonlinear Dispersive Waves , 1970 .

[24]  G. A. El,et al.  Dispersive and Diffusive-Dispersive Shock Waves for Nonconvex Conservation Laws , 2015, SIAM Rev..

[25]  James Howard,et al.  Stability of Hamiltonian equilibria , 2013, Scholarpedia.

[26]  D. Ratliff On the reduction of coupled NLS equations to non-linear phase equations via modulation of a two-phase wavetrain , 2017 .

[27]  Richard Kollár,et al.  Graphical Krein Signature Theory and Evans-Krein Functions , 2012, SIAM Rev..

[28]  Hans Volkmer,et al.  Eigencurves for Two-Parameter Sturm-Liouville Equations , 1996, SIAM Rev..

[29]  G. B. Whitham,et al.  Non-linear dispersion of water waves , 1967, Journal of Fluid Mechanics.

[30]  T. Bridges A universal form for the emergence of the Korteweg–de Vries equation , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  Thomas J. Bridges,et al.  On the Elliptic-Hyperbolic Transition in Whitham Modulation Theory , 2017, SIAM J. Appl. Math..

[32]  T. Bridges,et al.  Multiphase wavetrains, singular wave interactions and the emergence of the Korteweg–de Vries equation , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[33]  Turitsyn Blow-up in the Boussinesq equation. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[34]  J. Willebrand,et al.  Energy transport in a nonlinear and inhomogeneous random gravity wave field , 1975, Journal of Fluid Mechanics.

[35]  M. Hoefer,et al.  Modulations of viscous fluid conduit periodic waves , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  M. Lighthill Some special cases treated by the Whitham theory , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[37]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[38]  N. Berloff,et al.  Condensation of classical nonlinear waves in a two-component system , 2008, 0803.0884.

[39]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[40]  J. Williamson On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems , 1936 .

[41]  D. Ratliff The modulation of multiple phases leading to the modified Korteweg-de Vries equation. , 2017, Chaos.

[42]  Dirk Olbers,et al.  Ocean Dynamics , 2012 .

[43]  J. Stillwell,et al.  Symmetry , 2000, Am. Math. Mon..

[44]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[45]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[46]  Jing-Bo Chen Multisymplectic geometry, local conservation laws and Fourier pseudospectral discretization for the "good" Boussinesq equation , 2005, Appl. Math. Comput..

[47]  Chun-Hua Guo,et al.  Algorithms for hyperbolic quadratic eigenvalue problems , 2005, Math. Comput..

[48]  P. Lancaster,et al.  Indefinite Linear Algebra and Applications , 2005 .

[49]  A. Degasperis,et al.  Rogue Wave Type Solutions and Spectra of Coupled Nonlinear Schrödinger Equations , 2019, Fluids.