Design Principles for SuCESsFul Biosensors: Specific Fluorophore/Analyte Binding and Minimization of Fluorophore/Scaffold Interactions.

[1]  J. J. Macklin,et al.  A general method to improve fluorophores for live-cell and single-molecule microscopy , 2014, Nature Methods.

[2]  Christopher D Spicer,et al.  Selective chemical protein modification , 2014, Nature Communications.

[3]  B. Pentelute,et al.  Delivery of Antibody Mimics into Mammalian Cells via Anthrax Toxin Protective Antigen , 2014, Chembiochem : a European journal of chemical biology.

[4]  L. Liotta,et al.  Protein painting reveals solvent-excluded drug targets hidden within native protein–protein interfaces , 2014, Nature Communications.

[5]  Dima Kozakov,et al.  How Proteins Bind Macrocycles , 2014, Nature chemical biology.

[6]  K Dane Wittrup,et al.  Equilibrium and dynamic design principles for binding molecules engineered for reagentless biosensors. , 2014, Analytical biochemistry.

[7]  M. Eremets,et al.  Ammonia as a case study for the spontaneous ionization of a simple hydrogen-bonded compound , 2014, Nature Communications.

[8]  B. Imperiali,et al.  Tailoring chimeric ligands for studying and biasing ErbB receptor family interactions. , 2014, Angewandte Chemie.

[9]  M. Distefano,et al.  Enzymatic labeling of proteins: techniques and approaches. , 2013, Bioconjugate chemistry.

[10]  K. Hahn,et al.  Knowledge-based design of a biosensor to quantify localized ERK activation in living cells. , 2013, Chemistry & biology.

[11]  K. Hahn,et al.  Environment-sensing merocyanine dyes for live cell imaging applications. , 2013, Bioconjugate chemistry.

[12]  D. Irvine,et al.  Rapid conformational epitope mapping of anti-gp120 antibodies with a designed mutant panel displayed on yeast. , 2012, Journal of molecular biology.

[13]  Sohila Zadran,et al.  Fluorescence resonance energy transfer (FRET)-based biosensors: visualizing cellular dynamics and bioenergetics , 2012, Applied Microbiology and Biotechnology.

[14]  Gerhard Wagner,et al.  Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling , 2012, Journal of Biomolecular NMR.

[15]  Shohei Koide,et al.  Teaching an old scaffold new tricks: monobodies constructed using alternative surfaces of the FN3 scaffold. , 2012, Journal of molecular biology.

[16]  A. Wand,et al.  Optimization of NMR spectroscopy of encapsulated proteins dissolved in low viscosity fluids , 2011, Journal of biomolecular NMR.

[17]  H. Bedouelle,et al.  Reagentless fluorescent biosensors from artificial families of antigen binding proteins. , 2011, Biosensors & bioelectronics.

[18]  Steven M. Lewis,et al.  A biosensor generated via high throughput screening quantifies cell edge Src dynamics , 2011, Nature chemical biology.

[19]  B. Imperiali,et al.  Development of a fluorogenic sensor for activated Cdc42. , 2011, Bioorganic & medicinal chemistry letters.

[20]  K. Wittrup,et al.  The full amino acid repertoire is superior to serine/tyrosine for selection of high affinity immunoglobulin G binders from the fibronectin scaffold. , 2010, Protein engineering, design & selection : PEDS.

[21]  A. Plückthun,et al.  Knowledge-based design of reagentless fluorescent biosensors from a designed ankyrin repeat protein. , 2010, Protein engineering, design & selection : PEDS.

[22]  S. Hyberts,et al.  Poisson-gap sampling and forward maximum entropy reconstruction for enhancing the resolution and sensitivity of protein NMR data. , 2010, Journal of the American Chemical Society.

[23]  B. Imperiali,et al.  Monitoring protein interactions and dynamics with solvatochromic fluorophores. , 2010, Trends in biotechnology.

[24]  B. Imperiali,et al.  Thiol-reactive derivatives of the solvatochromic 4-N,N-dimethylamino-1,8-naphthalimide fluorophore: a highly sensitive toolset for the detection of biomolecular interactions. , 2009, Bioconjugate chemistry.

[25]  B. Imperiali,et al.  A versatile amino acid analogue of the solvatochromic fluorophore 4-N,N-dimethylamino-1,8-naphthalimide: a powerful tool for the study of dynamic protein interactions. , 2008, Journal of the American Chemical Society.

[26]  A. Kapila,et al.  Picomolar affinity fibronectin domains engineered utilizing loop length diversity, recursive mutagenesis, and loop shuffling. , 2008, Journal of molecular biology.

[27]  Shohei Koide,et al.  A Dominant Conformational Role for Amino Acid Diversity in Minimalist Protein-protein Interfaces Nih Public Access Introduction , 2022 .

[28]  James A J Fitzpatrick,et al.  Fluorogen-activating single-chain antibodies for imaging cell surface proteins , 2008, Nature Biotechnology.

[29]  B. Imperiali,et al.  Tools for investigating peptide–protein interactions: peptide incorporation of environment-sensitive fluorophores through SPPS-based 'building block' approach , 2007, Nature Protocols.

[30]  G. Clore,et al.  Open-to-closed transition in apo maltose-binding protein observed by paramagnetic NMR , 2007, Nature.

[31]  B. Imperiali,et al.  Fluorogenic probes for monitoring peptide binding to class II MHC proteins in living cells. , 2007, Nature chemical biology.

[32]  K Dane Wittrup,et al.  Isolating and engineering human antibodies using yeast surface display , 2006, Nature Protocols.

[33]  G. Winter,et al.  Selection of optical biosensors from chemisynthetic antibody libraries. , 2004, Protein engineering, design & selection : PEDS.

[34]  K. Hahn,et al.  Activation of Endogenous Cdc42 Visualized in Living Cells , 2004, Science.

[35]  A. Plückthun,et al.  High-affinity binders selected from designed ankyrin repeat protein libraries , 2004, Nature Biotechnology.

[36]  Hugues Bedouelle,et al.  Deriving topological constraints from functional data for the design of reagentless fluorescent immunosensors. , 2003, Journal of molecular biology.

[37]  Hugues Bedouelle,et al.  Knowledge-based design of reagentless fluorescent biosensors from recombinant antibodies. , 2002, Journal of molecular biology.

[38]  Jonathan W. Essex,et al.  A review of protein-small molecule docking methods , 2002, J. Comput. Aided Mol. Des..

[39]  L. Kay,et al.  Ligand-induced structural changes to maltodextrin-binding protein as studied by solution NMR spectroscopy. , 2001, Journal of molecular biology.

[40]  Kurt Wüthrich,et al.  TROSY-TYPE TRIPLE-RESONANCE EXPERIMENTS FOR SEQUENTIAL NMR ASSIGNMENTS OF LARGE PROTEINS , 1999 .

[41]  A. Koide,et al.  The fibronectin type III domain as a scaffold for novel binding proteins. , 1998, Journal of molecular biology.

[42]  K Wüthrich,et al.  TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Kalle Gehring,et al.  Solution NMR Studies of a 42 KDa Escherichia Coli Maltose Binding Protein/β-Cyclodextrin Complex: Chemical Shift Assignments and Analysis , 1998 .

[44]  J W Szostak,et al.  RNA-peptide fusions for the in vitro selection of peptides and proteins. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[45]  A. Plückthun,et al.  In vitro selection and evolution of functional proteins by using ribosome display. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[46]  G. Mei,et al.  Spectroscopic properties of an engineered maltose binding protein. , 1997, Protein engineering.

[47]  P. Hajduk,et al.  Discovering High-Affinity Ligands for Proteins: SAR by NMR , 1996, Science.

[48]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[49]  André Lopez,et al.  Drastic changes in the fluorescence properties of NBD probes with the polarity of the medium: involvement of a TICT state? , 1993 .

[50]  F. Quiocho,et al.  The 2.3-A resolution structure of the maltose- or maltodextrin-binding protein, a primary receptor of bacterial active transport and chemotaxis. , 1992, The Journal of biological chemistry.

[51]  T. Clackson,et al.  Making antibody fragments using phage display libraries , 1991, Nature.

[52]  D L Sackett,et al.  Nile red as a polarity-sensitive fluorescent probe of hydrophobic protein surfaces. , 1987, Analytical biochemistry.

[53]  W. Rettig Charge Separation in Excited States of Decoupled Systems. TICT Compounds and Implications Regarding the Development of New Laser Dyes and the Primary Processes of Vision and Photosynthesis , 1987 .

[54]  Wolfgang Rettig Ladungstrennung in angeregten Zuständen entkoppelter Systeme – TICT-Verbindungen und Implikationen für die Entwicklung neuer Laserfarbstoffe sowie für den Primärprozeß von Sehvorgang und Photosynthese , 1986 .

[55]  W. Rettig Charge Separation in Excited States of Decoupled Systems—TICT Compounds and Implications Regarding the Development of New Laser Dyes and the Primary Process of Vision and Photosynthesis , 1986 .

[56]  W. Rettig,et al.  Dependence of intramolecular rotation in p-cyano-N,N-dialkylanilines on the twist angle. A fluorescence, UV absorption, and photoelectron spectroscopic study , 1985 .

[57]  E. Voss,et al.  Mechanism of quenching of fluorescein by anti-fluorescein IgG antibodies. , 1977, Immunochemistry.

[58]  Kenner Ra,et al.  A new fluorescent probe for protein and nucleoprotein conformation. Binding of 7-(p-methoxybenzylamino)-4-nitrobenzoxadiazole to bovine trypsinogen and bacterial ribosomes. , 1971 .

[59]  D. Koshland,et al.  USE OF "REPORTER GROUPS" IN STRUCTURE-FUNCTION STUDIES OF PROTEINS. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Tiffany F. Chen,et al.  Engineering fibronectin-based binding proteins by yeast surface display. , 2013, Methods in enzymology.

[61]  W. Delano The PyMOL Molecular Graphics System , 2002 .