Physical, mathematical, and numerical derivations of the Cahn–Hilliard equation

Abstract We review physical, mathematical, and numerical derivations of the binary Cahn–Hilliard equation (after John W. Cahn and John E. Hilliard). The phase separation is described by the equation whereby a binary mixture spontaneously separates into two domains rich in individual components. First, we describe the physical derivation from the basic thermodynamics. The free energy of the volume Ω of an isotropic system is given by N V ∫ Ω [ F ( c ) + 0.5 ∊ 2 | ∇ c | 2 ] d x , where NV, c, F(c), ∊, and ∇c represent the number of molecules per unit volume, composition, free energy per molecule of a homogenous system, gradient energy coefficient related to the interfacial energy, and composition gradient, respectively. We define the chemical potential as the variational derivative of the total energy, and its flux as the minus gradient of the potential. Using the usual continuity equation, we obtain the Cahn–Hilliard equation. Second, we outline the mathematical derivation of the Cahn–Hilliard equation. The approach originates from the free energy functional and its justification of the functional in the Hilbert space. After calculating the gradient, we obtain the Cahn–Hilliard equation as a gradient flow. Third, various aspects are introduced using numerical methods such as the finite difference, finite element, and spectral methods. We also provide a short MATLAB program code for the Cahn–Hilliard equation using a pseudospectral method.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Luis A. Caffarelli,et al.  An L∞ bound for solutions of the Cahn-Hilliard equation , 1995 .

[3]  Karl B Glasner,et al.  A diffuse interface approach to Hele-Shaw flow , 2003 .

[4]  Yan Xu,et al.  Local discontinuous Galerkin methods for the Cahn-Hilliard type equations , 2007, J. Comput. Phys..

[5]  M. Fernandino,et al.  The least squares spectral element method for the Cahn-Hilliard equation , 2011 .

[6]  M. Ohadi,et al.  Phase field modeling of Taylor flow in mini/microchannels, Part II: Hydrodynamics of Taylor flow , 2013 .

[7]  Shenyang Y. Hu,et al.  A phase-field model for evolving microstructures with strong elastic inhomogeneity , 2001 .

[8]  Hao-qing Wu,et al.  Convergence to Equilibrium for the Cahn-Hilliard Equation with Wentzell Boundary Condition , 2004, 0705.3362.

[9]  Charles M. Elliott,et al.  Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy , 1992 .

[10]  Matthias Winter,et al.  Stationary solutions for the Cahn-Hilliard equation , 1998 .

[11]  Yin Jingxue,et al.  On the existence of nonnegative continuous solutions of the Cahn-Hilliard equation , 1992 .

[12]  A. Rey,et al.  Effect of viscous dissipation on acousto-spinodal decomposition of compressible polymer solutions: Early stage analysis , 2012 .

[13]  B. Vollmayr-Lee,et al.  Fast and accurate coarsening simulation with an unconditionally stable time step. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Charles M. Elliott,et al.  A second order splitting method for the Cahn-Hilliard equation , 1989 .

[15]  F. Otto,et al.  Upper Bounds on Coarsening Rates , 2002 .

[16]  Bulent S. Biner,et al.  Phase-field modeling of temperature gradient driven pore migration coupling with thermal conduction , 2012 .

[17]  P. Colella,et al.  A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .

[18]  Jaemin Shin,et al.  A parallel multigrid method of the Cahn–Hilliard equation , 2013 .

[19]  S. A. Khayam The Discrete Cosine Transform ( DCT ) : Theory and Application 1 , 2003 .

[20]  C. M. Elliott,et al.  Numerical Studies of the Cahn-Hilliard Equation for Phase Separation , 1987 .

[21]  K. Weinberg,et al.  Computational modeling of phase separation and coarsening in solder alloys , 2012 .

[22]  R. Nicolaides,et al.  Numerical analysis of a continuum model of phase transition , 1991 .

[23]  N. Ahmed,et al.  Discrete Cosine Transform , 1996 .

[24]  M. Grinfeld,et al.  Counting stationary solutions of the Cahn–Hilliard equation by transversality arguments , 1995, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[25]  Steven M. Wise,et al.  Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method , 2007, J. Comput. Phys..

[26]  Andrea L. Bertozzi,et al.  Analysis of a Two-Scale Cahn-Hilliard Model for Binary Image Inpainting , 2007, Multiscale Model. Simul..

[27]  C. M. Elliott,et al.  A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation , 1989 .

[28]  Jie Shen,et al.  An efficient moving mesh spectral method for the phase-field model of two-phase flows , 2009, J. Comput. Phys..

[29]  D. Rousseau,et al.  Morphology control in symmetric polymer blends using spinodal decomposition , 2005 .

[30]  H. Frieboes,et al.  Three-dimensional multispecies nonlinear tumor growth--I Model and numerical method. , 2008, Journal of theoretical biology.

[31]  Peter W. Bates,et al.  Convergence of the Cahn-Hilliard equation to the Hele-Shaw model , 1994 .

[32]  Isidore Rigoutsos,et al.  An algorithm for point clustering and grid generation , 1991, IEEE Trans. Syst. Man Cybern..

[33]  Richard Welford,et al.  A multigrid finite element solver for the Cahn-Hilliard equation , 2006, J. Comput. Phys..

[34]  Mahmood Mamivand,et al.  A review on phase field modeling of martensitic phase transformation , 2013 .

[35]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[36]  A. Miranville Generalized Cahn-Hilliard equations based on a microforce balance , 2003 .

[37]  John W. Cahn,et al.  Phase Separation by Spinodal Decomposition in Isotropic Systems , 1965 .

[38]  Peter W. Bates,et al.  Slow motion for the Cahn-Hilliard equation in one space dimension , 1991 .

[39]  Héctor D. Ceniceros,et al.  Three-dimensional, fully adaptive simulations of phase-field fluid models , 2010, J. Comput. Phys..

[40]  Jeffrey W. Bullard,et al.  Computational and mathematical models of microstructural evolution , 1998 .

[41]  David Jacqmin,et al.  Contact-line dynamics of a diffuse fluid interface , 2000, Journal of Fluid Mechanics.

[42]  J. Lowengrub,et al.  Conservative multigrid methods for Cahn-Hilliard fluids , 2004 .

[43]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[44]  Arnaud Debussche,et al.  On the Cahn-Hilliard equation with a logarithmic free energy , 1995 .

[45]  Daisuke Furihata,et al.  A stable and conservative finite difference scheme for the Cahn-Hilliard equation , 2001, Numerische Mathematik.

[46]  Charles M. Elliott,et al.  On the Cahn-Hilliard equation , 1986 .

[47]  Wei Shyy,et al.  Marker-Based, 3-D Adaptive Cartesian Grid Method for Multiphase Flow around Irregular Geometries , 2008 .

[48]  Phillip Colella,et al.  Adaptive mesh refinement for multiscale nonequilibrium physics , 2005, Computing in Science & Engineering.

[49]  K. Weinberg,et al.  Numerical simulation of diffusion induced phase separation and coarsening in binary alloys , 2011 .

[50]  E. Reverchon,et al.  Numerical analysis of the characteristic times controlling supercritical antisolvent micronization , 2012 .

[51]  W. Gaudig A theory of spinodal decomposition stabilized by coherent strain in binary alloys , 2013 .

[52]  Piotr Rybka,et al.  Convergence of solutions to cahn-hilliard equation , 1999 .

[53]  Jie Shen,et al.  Applications of semi-implicit Fourier-spectral method to phase field equations , 1998 .

[54]  Zi-Kui Liu,et al.  Spectral implementation of an adaptive moving mesh method for phase-field equations , 2006, J. Comput. Phys..

[55]  R. Chella,et al.  Mixing of a two-phase fluid by cavity flow. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[56]  Pierluigi Colli,et al.  Well-posedness and Long-time Behavior for a Nonstandard Viscous Cahn-Hilliard System , 2011, SIAM J. Appl. Math..

[57]  Harald Garcke,et al.  Finite Element Approximation of the Cahn-Hilliard Equation with Degenerate Mobility , 1999, SIAM J. Numer. Anal..

[58]  Jaemin Shin,et al.  A conservative numerical method for the Cahn-Hilliard equation with Dirichlet boundary conditions in complex domains , 2013, Comput. Math. Appl..

[59]  Patrick Patrick Anderson,et al.  Phase separation of viscous ternary liquid mixtures , 2012 .

[60]  Yinnian He,et al.  On large time-stepping methods for the Cahn--Hilliard equation , 2007 .

[61]  Patrick Patrick Anderson,et al.  On scaling of diffuse-interface models , 2006 .

[62]  K. R. Rao,et al.  The Transform and Data Compression Handbook , 2000 .

[63]  Junseok Kim Phase-Field Models for Multi-Component Fluid Flows , 2012 .

[64]  Jan Prüss,et al.  Convergence to steady states of solutions of the Cahn–Hilliard and Caginalp equations with dynamic boundary conditions , 2006 .

[65]  Charles M. Elliott,et al.  The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy Part II: Numerical analysis , 1991, European Journal of Applied Mathematics.

[66]  Andrew G. Glen,et al.  APPL , 2001 .

[67]  Jie Shen,et al.  A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method , 2003 .

[68]  D. J. Eyre Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .

[69]  Robert L. Pego,et al.  Front migration in the nonlinear Cahn-Hilliard equation , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[70]  Xiangrong Li,et al.  Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching , 2009, Journal of mathematical biology.

[71]  Anil K. Jain,et al.  Image data compression: A review , 1981, Proceedings of the IEEE.

[72]  L. Segel,et al.  Nonlinear aspects of the Cahn-Hilliard equation , 1984 .

[73]  Andrea L. Bertozzi,et al.  Inpainting of Binary Images Using the Cahn–Hilliard Equation , 2007, IEEE Transactions on Image Processing.

[74]  Junseok Kim,et al.  An Unconditionally Gradient Stable Adaptive Mesh Refinement for the Cahn-Hilliard Equation , 2008 .

[75]  Jie Shen,et al.  Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit Fourier spectral method. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[76]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[77]  B. M. Fulk MATH , 1992 .

[78]  Ming Wang,et al.  A nonconforming finite element method for the Cahn-Hilliard equation , 2010, J. Comput. Phys..

[79]  Felix Otto,et al.  Dynamics of Labyrinthine Pattern Formation in Magnetic Fluids: A Mean‐Field Theory , 1998 .

[80]  M. Horstemeyer,et al.  Investigating the Effects of Grain Boundary Energy Anisotropy and Second-Phase Particles on Grain Growth Using a Phase-Field Model , 2011 .

[81]  Mehdi Dehghan,et al.  Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices , 2006, Math. Comput. Simul..

[82]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[83]  Franck Boyer,et al.  A theoretical and numerical model for the study of incompressible mixture flows , 2002 .

[84]  Roberto Mauri,et al.  Spinodal decomposition of binary mixtures with composition-dependent heat conductivities , 2008 .

[85]  William H. Press,et al.  Numerical recipes in C , 2002 .

[86]  J. Lowengrub,et al.  Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[87]  C. M. Elliott,et al.  On the Cahn-Hilliard equation with degenerate mobility , 1996 .

[88]  Satish Kumar,et al.  Two-dimensional two-layer channel flow near a step , 2012 .

[89]  Alain Miranville,et al.  On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions , 2009 .

[90]  Bernd Rinn,et al.  Phase separation in confined geometries: Solving the Cahn–Hilliard equation with generic boundary conditions , 2001 .

[91]  Jaemin Shin,et al.  A conservative numerical method for the Cahn-Hilliard equation in complex domains , 2011, J. Comput. Phys..

[92]  Junseok Kim,et al.  A continuous surface tension force formulation for diffuse-interface models , 2005 .

[93]  Junseok Kim,et al.  A numerical method for the Cahn–Hilliard equation with a variable mobility , 2007 .

[94]  Charles M. Elliott,et al.  The Cahn-Hilliard Model for the Kinetics of Phase Separation , 1989 .

[95]  Krishna Garikipati,et al.  A discontinuous Galerkin method for the Cahn-Hilliard equation , 2006, J. Comput. Phys..

[96]  Junseok Kim,et al.  Accurate contact angle boundary conditions for the Cahn–Hilliard equations , 2011 .

[97]  K. Easterling,et al.  Phase Transformations in Metals and Alloys , 2021 .