CoRg: Commonsense Reasoning Using a Theorem Prover and Machine Learning

Commonsense reasoning is an everyday task that is intuitive for humans but hard to implement for computers. It requires large knowledge bases to get the required data from, although this data is still incomplete or even inconsistent. While machine learning algorithms perform rather well on these tasks, the reasoning process remains a black box. To close this gap, our system CoRg aims to build an explainable and well-performing system, which consists of both an explainable deductive derivation process and a machine learning part. We conduct our experiments on the Copa question-answering benchmark using the ontologies WordNet, Adimen-SUMO, and ConceptNet. The knowledge is fed into the theorem prover Hyper and in the end the conducted models will be analyzed using machine learning algorithms, to derive the most probable answer.

[1]  Douglas B. Lenat,et al.  CYC: a large-scale investment in knowledge infrastructure , 1995, CACM.

[2]  Hugo Liu,et al.  ConceptNet — A Practical Commonsense Reasoning Tool-Kit , 2004 .

[3]  Elena Cabrio,et al.  KNEWS: Using Logical and Lexical Semantics to Extract Knowledge from Natural Language , 2016, ECAI 2016.

[4]  Javier Álvez,et al.  Adimen-SUMO: Reengineering an Ontology for First-Order Reasoning , 2012, Int. J. Semantic Web Inf. Syst..

[5]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[6]  Andrei Voronkov,et al.  Sine Qua Non for Large Theory Reasoning , 2011, CADE.

[7]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[8]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[9]  Simon Ostermann,et al.  SemEval-2018 Task 11: Machine Comprehension Using Commonsense Knowledge , 2018, *SEMEVAL.

[10]  Ulrich Furbach,et al.  The RatioLog Project: Rational Extensions of Logical Reasoning , 2015, KI - Künstliche Intelligenz.

[11]  Adam Pease,et al.  Towards a standard upper ontology , 2001, FOIS.

[12]  Stanley Shostak Smart Machines: IBM’s Watson and the Era of Cognitive Computing , 2016 .

[13]  Peter Baumgartner,et al.  Hyper Tableaux , 1996, JELIA.

[14]  E. Davis,et al.  Common Sense Reasoning , 2014, Encyclopedia of Social Network Analysis and Mining.

[15]  Björn Pelzer,et al.  System Description: E-KRHyper , 2007, CADE.

[16]  Zornitsa Kozareva,et al.  SemEval-2012 Task 7: Choice of Plausible Alternatives: An Evaluation of Commonsense Causal Reasoning , 2011, *SEMEVAL.

[17]  Frieder Stolzenburg,et al.  A series of revisions of David Poole’s specificity , 2016, Annals of Mathematics and Artificial Intelligence.

[18]  Gerhard Weikum,et al.  YAGO: A Large Ontology from Wikipedia and WordNet , 2008, J. Web Semant..

[19]  Nathanael Chambers,et al.  LSDSem 2017 Shared Task: The Story Cloze Test , 2017, LSDSem@EACL.

[20]  Ulrich Furbach,et al.  Commonsense Reasoning Meets Theorem Proving , 2016, Bridging@IJCAI.

[21]  Ulrich Furbach,et al.  An application of automated reasoning in natural language question answering , 2010, AI Commun..

[22]  Catherine Havasi,et al.  ConceptNet 5.5: An Open Multilingual Graph of General Knowledge , 2016, AAAI.