Multiplication and Squaring on Pairing-Friendly Fields

Pairing-friendly fields are finite fields that are suitable for the implementation of cryptographic bilinear pairings. In this paper we review multiplication and squaring methods for pairing-friendly fields Fpk with k ∈ {2, 3, 4, 6}. For composite k, we consider every possible towering construction. We compare the methods to determine which is most efficient based on the number of basic Fp operations, as well as the best constructions for these finite extension fields. We also present experimental results for every method.

[1]  Peter L. Montgomery,et al.  Five, six, and seven-term Karatsuba-like formulae , 2005, IEEE Transactions on Computers.

[2]  S. Cook,et al.  ON THE MINIMUM COMPUTATION TIME OF FUNCTIONS , 1969 .

[3]  Alfred Menezes,et al.  Pairing-Based Cryptography at High Security Levels , 2005, IMACC.

[4]  Chae Hoon Lim,et al.  Fast Implementation of Elliptic Curve Arithmetic in GF(pn) , 2000, Public Key Cryptography.

[5]  Christof Paar,et al.  Generalizations of the Karatsuba Algorithm for Efficient Implementations , 2006, IACR Cryptol. ePrint Arch..

[6]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[7]  Nigel P. Smart,et al.  High Security Pairing-Based Cryptography Revisited , 2006, ANTS.

[8]  Marco Bodrato,et al.  What About Toom-Cook Matrices Optimality ? , 2006 .

[9]  P. L. Montgomery Modular multiplication without trial division , 1985 .

[10]  M. Anwar Hasan,et al.  Asymmetric Squaring Formulae , 2007, 18th IEEE Symposium on Computer Arithmetic (ARITH '07).

[11]  Alfred Menezes,et al.  Guide to Elliptic Curve Cryptography , 2004, Springer Professional Computing.

[12]  Anatolij A. Karatsuba,et al.  Multiplication of Multidigit Numbers on Automata , 1963 .

[13]  Nigel P. Smart,et al.  On Computing Products of Pairings , 2006, IACR Cryptol. ePrint Arch..

[14]  Matthew K. Franklin,et al.  Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.

[15]  Antoine Joux,et al.  A One Round Protocol for Tripartite Diffie–Hellman , 2000, Journal of Cryptology.

[16]  Frederik Vercauteren,et al.  The Eta Pairing Revisited , 2006, IEEE Transactions on Information Theory.

[17]  M. Scott Implementing cryptographic pairings , 2007 .

[18]  Paulo S. L. M. Barreto,et al.  Efficient Implementation of Pairing-Based Cryptosystems , 2004, Journal of Cryptology.

[19]  David Thomas,et al.  The Art in Computer Programming , 2001 .