Functionalized Lipid Particulates in Targeted Drug Delivery

Lipid particulates as the name suggests are a breed of novel delivery systems consisting of lipids or lipid based excipients as its major components. Functionalized lipid particulates are designed preferably by incorporation of specific lipid based excipients which can confer targeting ability. The chapter focuses on functionalized lipid particulates like passively targeted liposomes via PEGylation; actively targeted liposomes functionalized via use of monoclonal antibodies, carbohydrates, charged lipids, or other type of targeting ligands; solid lipid nanoparticles and nanostructured lipid carriers functionalized with a targeting ligand; cationic emulsions and other functionalized lipid systems.

[1]  Sanyog Jain,et al.  Development and characterization of emulsomes for sustained and targeted delivery of an antiviral agent to liver , 2006, The Journal of pharmacy and pharmacology.

[2]  Massimo Fresta,et al.  Ethosomes for skin delivery of ammonium glycyrrhizinate: in vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[3]  G. Cevc,et al.  Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. , 1992, Biochimica et biophysica acta.

[4]  G. E. El Maghraby,et al.  Oestradiol skin delivery from ultradeformable liposomes: refinement of surfactant concentration. , 2000, International journal of pharmaceutics.

[5]  T. Allen,et al.  Ligand-targeted liposomal anticancer drugs. , 2003, Progress in lipid research.

[6]  A. Sezer Recent Advances in Novel Drug Carrier Systems , 2012 .

[7]  O. Abdallah,et al.  Deformable liposomes and ethosomes: mechanism of enhanced skin delivery. , 2006, International journal of pharmaceutics.

[8]  Arik Dahan,et al.  The effect of different lipid based formulations on the oral absorption of lipophilic drugs: the ability of in vitro lipolysis and consecutive ex vivo intestinal permeability data to predict in vivo bioavailability in rats. , 2007, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[9]  N. Zhang,et al.  Preparation and evaluation of N(3)-O-toluyl-fluorouracil-loaded liposomes. , 2008, International journal of pharmaceutics.

[10]  Malcolm N. Jones Carbohydrate-mediated liposomal targeting and drug delivery , 1994 .

[11]  F. Ren,et al.  A novel cell-penetrating peptide TAT-A1 delivers siRNA into tumor cells selectively. , 2013, Biochimie.

[12]  Wei Gong,et al.  Development and characteristics of temperature-sensitive liposomes for vinorelbine bitartrate. , 2011, International journal of pharmaceutics.

[13]  K. Mäder,et al.  Solid lipid nanoparticles: production, characterization and applications. , 2001, Advanced drug delivery reviews.

[14]  B. Godin,et al.  Ethosomes - novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[15]  A. Hoffman,et al.  Use of a Dynamic in Vitro Lipolysis Model to Rationalize Oral Formulation Development for Poor Water Soluble Drugs: Correlation with in Vivo Data and the Relationship to Intra-Enterocyte Processes in Rats , 2006, Pharmaceutical Research.

[16]  P. Pathak,et al.  Formulation and Evaluation of Lidocaine Lipid Nanosystems for Dermal Delivery , 2009, AAPS PharmSciTech.

[17]  X. Wu,et al.  Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. , 2007, Advanced drug delivery reviews.

[18]  R. Slavcev,et al.  Solid Lipid Nanoparticles: Tuneable Anti-Cancer Gene/Drug Delivery Systems , 2013 .

[19]  Karsten Mäder,et al.  Solid lipid nanoparticles , 2012 .

[20]  T. Tsai,et al.  Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: physicochemical characterization and pharmacokinetics. , 2010, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[21]  Sanket M. Shah,et al.  Lipid colloidal carriers for improvement of anticancer activity of orally delivered quercetin: formulation, characterization and establishing in vitro-in vivo advantage. , 2013, Journal of biomedical nanotechnology.

[22]  H. Maeda,et al.  Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[23]  J. Kamps,et al.  Efficient intracellular delivery of 5-fluorodeoxyuridine into colon cancer cells by targeted immunoliposomes. , 2002, Cancer detection and prevention.

[24]  Vivek Dhawan,et al.  Lecithin-based novel cationic nanocarriers (Leciplex) II: improving therapeutic efficacy of quercetin on oral administration. , 2011, Molecular pharmaceutics.

[25]  J. Pardeike,et al.  Nanostructured lipid carriers (NLC) in cosmetic dermal products. , 2007, Advanced drug delivery reviews.

[26]  Véronique Préat,et al.  To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[27]  I. Rubinstein,et al.  Freeze drying of peptide drugs self-associated with long-circulating, biocompatible and biodegradable sterically stabilized phospholipid nanomicelles. , 2008, International journal of pharmaceutics.

[28]  M. Nagarsenker,et al.  Formulation and In Vivo Evaluation of Self-Nanoemulsifying Granules for Oral Delivery of a Combination of Ezetimibe and Simvastatin , 2008 .

[29]  N. H. Luong,et al.  Magnetic properties of FePt nanoparticles prepared by sonoelectrodeposition , 2012 .

[30]  R. Cavalli,et al.  Timolol in lipospheres. , 1992, Die Pharmazie.

[31]  R. Müller,et al.  Cetyl palmitate-based NLC for topical delivery of Coenzyme Q(10) - development, physicochemical characterization and in vitro release studies. , 2007, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[32]  Pallab Pradhan,et al.  Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[33]  Maruyama,et al.  Possibility of active targeting to tumor tissues with liposomes. , 1999, Advanced drug delivery reviews.

[34]  Tetsuro Tanaka,et al.  Evidence for receptor-mediated hepatic uptake of pullulan in rats. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[35]  M. Hashida,et al.  Characterization of a lipophilic prodrug of 5-fluorouracil with a cholesterol promoiety and its application to liposomes. , 1988, Chemical & pharmaceutical bulletin.

[36]  P. Low,et al.  Folate-conjugated liposomes preferentially target macrophages associated with ovarian carcinoma. , 2004, Cancer letters.

[37]  A. Attama,et al.  Lipid Nanoparticulate Drug Delivery Systems: A Revolution in Dosage Form Design and Development , 2012 .

[38]  Jie Pan,et al.  Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of Docetaxel. , 2010, Biomaterials.

[39]  M. R. Mauk,et al.  Targeting of lipid vesicles: specificity of carbohydrate receptor analogues for leukocytes in mice. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[40]  C. Moonen,et al.  Ultrasound-mediated intracellular drug delivery using microbubbles and temperature-sensitive liposomes. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[41]  S. D. De Smedt,et al.  Ultradeformable cationic liposomes for delivery of small interfering RNA (siRNA) into human primary melanocytes. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[42]  Adrian C. Williams,et al.  Skin delivery of 5‐fluorouracil from ultradeformable and standard liposomes in‐vitro , 2001, The Journal of pharmacy and pharmacology.

[43]  Robert J. Lee,et al.  Vascular targeting of doxorubicin using cationic liposomes. , 2007, International journal of pharmaceutics.

[44]  S. Kawakami,et al.  Biodistribution characteristics of mannosylated, fucosylated, and galactosylated liposomes in mice. , 2000, Biochimica et biophysica acta.

[45]  N. G. Tayade,et al.  Development and Evaluation of Artemether Parenteral Microemulsion , 2010, Indian journal of pharmaceutical sciences.

[46]  A. H. Azandaryani,et al.  New surface-modified solid lipid nanoparticles using N-glutaryl phosphatidylethanolamine as the outer shell , 2011, International journal of nanomedicine.

[47]  S. Frokjaer,et al.  Targeting of liposome-associated calcipotriol to the skin: effect of liposomal membrane fluidity and skin barrier integrity. , 2011, International journal of pharmaceutics.

[48]  H. Maeda,et al.  Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[49]  H. Bunjes,et al.  Do nanoparticles prepared from lipids solid at room temperature always possess a solid lipid matrix , 1995 .

[50]  Ben J. Boyd,et al.  Susceptibility to Lipase-Mediated Digestion Reduces the Oral Bioavailability of Danazol After Administration as a Medium-Chain Lipid-Based Microemulsion Formulation , 2004, Pharmaceutical Research.

[51]  D. Boturyn,et al.  Tumor targeting with RGD peptide ligands-design of new molecular conjugates for imaging and therapy of cancers. , 2007, Anti-cancer agents in medicinal chemistry.

[52]  G. E. El Maghraby,et al.  Skin delivery of oestradiol from lipid vesicles: importance of liposome structure. , 2000, International journal of pharmaceutics.

[53]  B. Youan,et al.  Formulation of tenofovir-loaded functionalized solid lipid nanoparticles intended for HIV prevention. , 2011, Journal of pharmaceutical sciences.

[54]  A. Gabizon,et al.  Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[55]  C. Ciudad,et al.  Targeting of sterically stabilised pH-sensitive liposomes to human T-leukaemia cells. , 2005, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[56]  Robert Gurny,et al.  Current methods for attaching targeting ligands to liposomes and nanoparticles. , 2004, Journal of pharmaceutical sciences.

[57]  Dae-Duk Kim,et al.  Preparation and evaluation of paclitaxel-loaded PEGylated immunoliposome. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[58]  V. Torchilin,et al.  Enhanced cytotoxicity of monoclonal anticancer antibody 2C5-modified doxorubicin-loaded PEGylated liposomes against various tumor cell lines. , 2007, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[59]  F. Marcucci,et al.  Active targeting with particulate drug carriers in tumor therapy: fundamentals and recent progress. , 2004, Drug discovery today.

[60]  Rainer H Müller,et al.  Lipid nanoparticles for parenteral delivery of actives. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[61]  Lisa Brannon-Peppas,et al.  Active targeting schemes for nanoparticle systems in cancer therapeutics. , 2008, Advanced drug delivery reviews.

[62]  J. Emami,et al.  Formulation of LDL targeted nanostructured lipid carriers loaded with paclitaxel: a detailed study of preparation, freeze drying condition, and in vitro cytotoxicity , 2012 .

[63]  R. Müller,et al.  Spray-drying of solid lipid nanoparticles (SLN TM). , 1998, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[64]  A. Matsumura,et al.  Application of liposomes incorporating doxorubicin with sialyl Lewis X to prevent stenosis after rat carotid artery injury. , 2009, Biomaterials.

[65]  R. Müller,et al.  Plasma protein adsorption of Tween 80- and poloxamer 188-stabilized solid lipid nanoparticles. , 2003, Journal of drug targeting.

[66]  Vladimir P Torchilin,et al.  Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[67]  R. Pandey,et al.  Oral solid lipid nanoparticle-based antitubercular chemotherapy. , 2005, Tuberculosis.

[68]  Arthur G Erdman,et al.  The big picture on nanomedicine: the state of investigational and approved nanomedicine products. , 2013, Nanomedicine : nanotechnology, biology, and medicine.

[69]  V. Torchilin,et al.  Surface functionalization of doxorubicin-loaded liposomes with octa-arginine for enhanced anticancer activity. , 2013, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[70]  P. Devarajan,et al.  Evaluation of pullulan-functionalized doxorubicin nanoparticles for asialoglycoprotein receptor-mediated uptake in Hep G2 cell line , 2011, Cancer nanotechnology.

[71]  T. Masuko,et al.  Cytotoxicity of anti-c-erbB-2 immunoliposomes containing doxorubicin on human cancer cells. , 1995, British Journal of Cancer.

[72]  J. Petriz,et al.  Preparation of immunoliposomes directed against CD34 antigen as target. , 1998, Biochimica et biophysica acta.

[73]  P. Devarajan,et al.  Lipomer of doxorubicin hydrochloride for enhanced oral bioavailability. , 2012, International journal of pharmaceutics.

[74]  Wenjin Guo,et al.  Efficient intracellular drug and gene delivery using folate receptor-targeted pH-sensitive liposomes composed of cationic/anionic lipid combinations. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[75]  N. M. Rao,et al.  Haloperidol-associated Stealth Liposomes , 2005, Journal of Biological Chemistry.

[76]  Y. Tsai,et al.  Topical delivery of 5-aminolevulinic acid-encapsulated ethosomes in a hyperproliferative skin animal model using the CLSM technique to evaluate the penetration behavior. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[77]  M. L. González-Rodríguez,et al.  Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes. , 2005, International journal of pharmaceutics.

[78]  T. Ishida,et al.  Targeted delivery and triggered release of liposomal doxorubicin enhances cytotoxicity against human B lymphoma cells. , 2001, Biochimica et biophysica acta.

[79]  A. Date,et al.  Parenteral microemulsions: an overview. , 2008, International journal of pharmaceutics.

[80]  Dinesh Mishra,et al.  Melatonin loaded ethanolic liposomes: physicochemical characterization and enhanced transdermal delivery. , 2007, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[81]  G. Cevc,et al.  New, highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers, Transfersomes. , 2001, Biochimica et biophysica acta.

[82]  Ananth Annapragada,et al.  Controlled targeting of liposomal doxorubicin via the folate receptor in vitro. , 2003, Journal of controlled release : official journal of the Controlled Release Society.

[83]  R. Neubert,et al.  Solubilization of negatively charged DPPC/DPPG liposomes by bile salts. , 2004, Journal of colloid and interface science.

[84]  Ashley N Edelen,et al.  Biocompatible lecithin-based microemulsions with rhamnolipid and sophorolipid biosurfactants: formulation and potential applications. , 2010, Journal of colloid and interface science.

[85]  B. Wolff,et al.  The use of monoclonal anti-Thy1 IgG1 for the targeting of liposomes to AKR-A cells in vitro and in vivo. , 1984, Biochimica et biophysica acta.

[86]  J. Varshosaz,et al.  Targeting etoposide to acute myelogenous leukaemia cells using nanostructured lipid carriers coated with transferrin , 2012, Nanotechnology.

[87]  M. Nagarsenker,et al.  Synthesis of Monomethoxypolyethyleneglycol—Cholesteryl Ester and Effect of its Incorporation in Liposomes , 2011, AAPS PharmSciTech.

[88]  Yuan Zhang,et al.  Creation of Lung-Targeted Dexamethasone Immunoliposome and Its Therapeutic Effect on Bleomycin-Induced Lung Injury in Rats , 2013, PloS one.

[89]  J. Benoit,et al.  Serum-stable and long-circulating, PEGylated, pH-sensitive liposomes. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[90]  I. Hafez,et al.  Cholesteryl hemisuccinate exhibits pH sensitive polymorphic phase behavior. , 2000, Biochimica et biophysica acta.

[91]  J. Terao,et al.  Combination of lipids and emulsifiers enhances the absorption of orally administered quercetin in rats. , 2002, Journal of agricultural and food chemistry.

[92]  A. Müllertz,et al.  In vitro lipolysis models as a tool for the characterization of oral lipid and surfactant based drug delivery systems. , 2011, International journal of pharmaceutics.

[93]  S. Jain,et al.  Ethosomes : A Novel Vesicular Carrier For Enhanced Transdermal Delivery Of An AntiHIV Agent , 2004 .

[94]  N. Bovin,et al.  Antitumour activity of cytotoxic liposomes equipped with selectin ligand SiaLe(X), in a mouse mammary adenocarcinoma model. , 2000, European journal of cancer.

[95]  A. Domb Long acting injectable oxytetracycline-liposphere formulations , 1995 .

[96]  A. Date,et al.  Self-nanoemulsifying drug delivery systems: formulation insights, applications and advances. , 2010, Nanomedicine.

[97]  M. Masserini,et al.  Characterization of biotinylated liposomes sensitive to temperature and pH: new tools for anti-cancer drug delivery. , 1996, Chemistry and physics of lipids.

[98]  H. Maeda,et al.  A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. , 1986, Cancer research.

[99]  E. Peira,et al.  Deformable liposomes for dermal administration of methotrexate. , 2004, International journal of pharmaceutics.

[100]  T. Allen,et al.  A new strategy for attachment of antibodies to sterically stabilized liposomes resulting in efficient targeting to cancer cells. , 1995, Biochimica et biophysica acta.

[101]  R. Müller,et al.  Peptide-loaded solid lipid nanoparticles (SLN): Influence of production parameters , 1997 .

[102]  Christopher J H Porter,et al.  Evaluation of the in‐vitro digestion profiles of long and medium chain glycerides and the phase behaviour of their lipolytic products , 2002, The Journal of pharmacy and pharmacology.

[103]  R. Müller,et al.  Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. , 2000, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[104]  Y. Katare,et al.  Ligand directed macrophage targeting of amphotericin B loaded liposomes. , 2000, International journal of pharmaceutics.

[105]  K. Ishihara,et al.  Surface immobilization of biocompatible phospholipid polymer multilayered hydrogel on titanium alloy. , 2008, Colloids and surfaces. B, Biointerfaces.

[106]  S. Kitagawa,et al.  Enhanced delivery of retinoic acid to skin by cationic liposomes. , 2006, Chemical & pharmaceutical bulletin.

[107]  R K Jain,et al.  Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. , 1990, Journal of the National Cancer Institute.

[108]  Chong-K. Kim,et al.  In vitro and in vivo transfection efficiency of a novel ultradeformable cationic liposome. , 2004, Biomaterials.

[109]  S. Watanabe,et al.  Preparation of long-circulating immunoliposomes containing adriamycin by a novel method to coat immunoliposomes with poly(ethylene glycol). , 1995, Biochimica et biophysica acta.

[110]  X. Wu,et al.  In vivo evaluation of a new polymer-lipid hybrid nanoparticle (PLN) formulation of doxorubicin in a murine solid tumor model. , 2007, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[111]  T. N. Palmer,et al.  The mechanism of liposome accumulation in infarction. , 1984, Biochimica et biophysica acta.

[112]  Yaping Li,et al.  The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. , 2009, Biomaterials.

[113]  K. Ishihara,et al.  Surface grafting of biocompatible phospholipid polymer MPC provides wear resistance of tibial polyethylene insert in artificial knee joints. , 2010, Osteoarthritis and cartilage.

[114]  Pradeep Tyagi,et al.  Anisamide‐targeted stealth liposomes: A potent carrier for targeting doxorubicin to human prostate cancer cells , 2004, International journal of cancer.

[115]  D. Papahadjopoulos,et al.  Targeting of anti-Thy 1.1 monoclonal antibody conjugated liposomes in Thy 1.1 mice after intravenous administration. , 1987, Biochimica et biophysica acta.

[116]  Y. Obata,et al.  Novel ultra-deformable vesicles entrapped with bleomycin and enhanced to penetrate rat skin. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[117]  M. Zern,et al.  Targeting hepatocytes for drug and gene delivery: emerging novel approaches and applications. , 2002, Frontiers in bioscience : a journal and virtual library.

[118]  Mangal S Nagarsenker,et al.  Synthesis, characterization, and in vitro evaluation of palmitoylated arabinogalactan with potential for liver targeting. , 2013, Carbohydrate research.

[119]  Mangal S Nagarsenker,et al.  Optimized microemulsions and solid microemulsion systems of simvastatin: characterization and in vivo evaluation. , 2010, Journal of pharmaceutical sciences.

[120]  N. K. Jain,et al.  Proultraflexible lipid vesicles for effective transdermal delivery of levonorgestrel: Development, characterization, and performance evaluation , 2005, AAPS PharmSciTech.

[121]  Sanyog Jain,et al.  Non-invasive vaccine delivery in transfersomes, niosomes and liposomes: a comparative study. , 2005, International journal of pharmaceutics.

[122]  Volker Albrecht,et al.  Development of different temoporfin-loaded invasomes-novel nanocarriers of temoporfin: characterization, stability and in vitro skin penetration studies. , 2009, Colloids and surfaces. B, Biointerfaces.

[123]  S. Benzeno,et al.  Interaction of a Self-Emulsifying Lipid Drug Delivery System with the Everted Rat Intestinal Mucosa as a Function of Droplet Size and Surface Charge , 1998, Pharmaceutical Research.

[124]  G. Cevc Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery. , 1996, Critical reviews in therapeutic drug carrier systems.

[125]  J. Pardeike,et al.  Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. , 2009, International journal of pharmaceutics.