Advanced carbon aerogels for energy applications

Carbon aerogels are a unique class of high-surface-area materials derived by sol–gel chemistry. Their high mass-specific surface area and electrical conductivity, environmental compatibility and chemical inertness make them very promising materials for many energy related applications, specifically in view of recent developments in controlling their morphology. In this perspective we will review the synthesis of monolithic resorcinol–formaldehyde based carbon aerogels with hierarchical porosities for energy applications, including carbon nanotube and graphene composite carbon aerogels, as well as their functionalization by surface engineering. Applications that we will discuss include hydrogen and electrical energy storage, desalination and catalysis.

[1]  R. Pekala,et al.  Carbon Aerogels and Xerogels , 1992 .

[2]  Hideki Tanaka,et al.  Conductive and mesoporous single-wall carbon nanohorn/organic aerogel composites. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[3]  J. Bitter,et al.  Facilitated hydrogen storage in NaAlH4 supported on carbon nanofibers. , 2006, Angewandte Chemie.

[4]  S. Greenbaum,et al.  Multifunctional MnO2−Carbon Nanoarchitectures Exhibit Battery and Capacitor Characteristics in Alkaline Electrolytes , 2009 .

[5]  T. Baumann,et al.  Route to high surface area TiO2/C and TiCN/C composites , 2009 .

[6]  Andrew Dicks,et al.  The role of carbon in fuel cells , 2006 .

[7]  H. Tamon,et al.  Control of mesoporosity of carbon gels prepared by sol–gel polycondensation and freeze drying , 2001 .

[8]  Andreas Züttel,et al.  LiBH4 a new hydrogen storage material , 2003 .

[9]  R. Stephens,et al.  The kinetic enhancement of hydrogen cycling in NaAlH4 by melt infusion into nanoporous carbon aerogel , 2009, Nanotechnology.

[10]  Chi-Woo Lee,et al.  Desalination of a thermal power plant wastewater by membrane capacitive deionization , 2006 .

[11]  G. W. Murphy,et al.  The demineralization behavior of carbon and chemically-modified carbon electrodes , 1966 .

[12]  T. D. Tran,et al.  Electrosorption of inorganic salts from aqueous solution using carbon aerogels. , 2002, Environmental science & technology.

[13]  T. Baumann,et al.  Properties of single-walled carbon nanotube-based aerogels as a function of nanotube loading , 2009 .

[14]  M. Dresselhaus,et al.  Fabrication and nano-structure control of carbon aerogels via a microemulsion-templated sol–gel polymerization method , 2006 .

[15]  P. Achard,et al.  Platinum supported on resorcinol–formaldehyde based carbon aerogels for PEMFC electrodes: Influence of the carbon support on electrocatalytic properties , 2006 .

[16]  Justin C. Lytle,et al.  Multifunctional 3D nanoarchitectures for energy storage and conversion. , 2009, Chemical Society reviews.

[17]  M. Dresselhaus,et al.  Synthesis and characterization of copper-doped carbon aerogels , 2002 .

[18]  R. T. Yang,et al.  Hydrogen storage on platinum nanoparticles doped on superactivated carbon , 2007 .

[19]  J. Fricke,et al.  Aerogels—Nanoporous materials part I: Sol-gel process and drying of gels , 1995 .

[20]  Jun Shen,et al.  Microstructure Control of RF and Carbon Aerogels Prepared by Sol-Gel Process , 2005 .

[21]  Hongda Du,et al.  Carbon aerogel supported Pt–Ru catalysts for using as the anode of direct methanol fuel cells , 2007 .

[22]  Jean Gamby,et al.  Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors , 2001 .

[23]  Fang Fang,et al.  Hydrogen Storage Properties of Space-Confined NaAlH4 Nanoparticles in Ordered Mesoporous Silica , 2008 .

[24]  Yuping Wu,et al.  An activated carbon with high capacitance from carbonization of a resorcinol-formaldehyde resin , 2009 .

[25]  James A. Ritter,et al.  Carbonization and activation of sol–gel derived carbon xerogels , 2000 .

[26]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[27]  M. Dresselhaus,et al.  Activated Carbon Aerogels , 1996 .

[28]  Shuqin Song,et al.  Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3 , 2007 .

[29]  T. Gustafsson,et al.  Self-supported three-dimensional nanoelectrodes for microbattery applications. , 2009, Nano letters.

[30]  T. Baumann,et al.  Synthesis and characterization of monolithic, high surface area SiO2/C and SiC/C composites , 2010 .

[31]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[32]  F. Prinz,et al.  Application of Atomic Layer Deposition of Platinum to Solid Oxide Fuel Cells , 2008 .

[33]  J. Fricke,et al.  High surface area carbon aerogels for supercapacitors , 1998 .

[34]  K. C. Hong,et al.  Carbon aerogel composite electrodes , 1993 .

[35]  James A. Ritter,et al.  Preparation and Properties of Resorcinol–Formaldehyde Organic and Carbon Gels , 2003 .

[36]  P. Adelhelm,et al.  The structural characterization and H2 sorption properties of carbon-supported Mg1−xNix nanocrystallites , 2009, Nanotechnology.

[37]  T. Baumann,et al.  Template-directed synthesis of periodic macroporous organic and carbon aerogels , 2004 .

[38]  S. Iijima,et al.  Adsorption Mechanism of Supercritical Hydrogen in Internal and Interstitial Nanospaces of Single-Wall Carbon Nanohorn Assembly , 2002 .

[39]  T. Baumann,et al.  Synthesis and characterization of monolithic carbon aerogel nanocomposites containing double-walled carbon nanotubes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[40]  R. Stroud,et al.  Sulfur-functionalized carbon aerogels: a new approach for loading high-surface-area electrode nanoarchitectures with precious metal catalysts , 2004 .

[41]  Justin C. Lytle,et al.  Synthesis and Rate Performance of Monolithic Macroporous Carbon Electrodes for Lithium‐Ion Secondary Batteries , 2005 .

[42]  G. Chai,et al.  Synthesis of Ordered, Uniform, Macroporous Carbons with Mesoporous Walls Templated by Aggregates of Polystyrene Spheres and Silica Particles for Use as Catalyst Supports in Direct Methanol Fuel Cells , 2004 .

[43]  T. Baumann,et al.  Atomic layer deposition of ZnO on ultralow-density nanoporous silica aerogel monoliths , 2005 .

[44]  Nigel M. Sammes,et al.  Novel carbon aerogel-supported catalysts for PEM fuel cell application , 2005 .

[45]  R. Pekala,et al.  Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes , 1996 .

[46]  R. Pekala,et al.  Organic aerogels from the polycondensation of resorcinol with formaldehyde , 1989 .

[47]  Siegmar Roth,et al.  Hydrogen adsorption in different carbon nanostructures , 2005 .

[48]  M. Ritala,et al.  Ruthenium Thin Films Grown by Atomic Layer Deposition , 2003 .

[49]  J. Fricke,et al.  Integration of carbon aerogels in PEM fuel cells , 2001 .

[50]  John Newman,et al.  Desalting by Means of Porous Carbon Electrodes , 1971 .

[51]  J. L. Kaschmitter,et al.  The Aerocapacitor: An Electrochemical Double‐Layer Energy‐Storage Device , 1993 .

[52]  J. Elam,et al.  Atomic layer deposition of W on nanoporous carbon aerogels , 2006 .

[53]  John J. Vajo,et al.  Enhanced Hydrogen Storage Kinetics of LiBH4 in Nanoporous Carbon Scaffolds , 2008 .

[54]  T. Baumann,et al.  High surface area carbon nanotube-supported titanium carbonitride aerogels† , 2009 .

[55]  S. Kistler,et al.  Coherent Expanded Aerogels and Jellies. , 1931, Nature.

[56]  Takeo Suzuki,et al.  Preparation and characterization of carbon cryogel microspheres , 2002 .

[57]  Douglas T. Queheillalt,et al.  Synthesis of open-cell metal foams by templated directed vapor deposition , 2001 .

[58]  K. Kano,et al.  Direct Electrochemistry of CueO and Its Mutants at Residues to and Near Type I Cu for Oxygen‐Reducing Biocathode , 2009 .

[59]  Ping Liu,et al.  The synthesis and hydrogen storage properties of a MgH2 incorporated carbon aerogel scaffold , 2009, Nanotechnology.

[60]  M. Ritala,et al.  Atomic Layer Deposition of Platinum Thin Films , 2003 .

[61]  E. Yoo,et al.  Atomic Hydrogen Storage in Carbon Nanotubes Promoted by Metal Catalysts , 2004 .

[62]  K. Kanamura,et al.  Composite electrode composed of bimodal porous carbon and polypyrrole for electrochemical capacitors , 2008 .

[63]  A. Mansour,et al.  Electroless deposition of conformal nanoscale iron oxide on carbon nanoarchitectures for electrochemical charge storage. , 2010, ACS nano.

[64]  G. Cao,et al.  Spectroscopic studies of dehydrogenation of ammonia borane in carbon cryogel. , 2007, The journal of physical chemistry. B.

[65]  A. Kleinhammes,et al.  H2 Storage in Microporous Carbons from PEEK Precursors , 2010 .

[66]  John W. Geus,et al.  The Preparation of Carbon-Supported Magnesium Nanoparticles using Melt Infiltration , 2007 .

[67]  R. Brandt,et al.  Acetic Acid Catalyzed Carbon Aerogels , 2003 .

[68]  Pierre-Louis Taberna,et al.  High rate capability pure Sn-based nano-architectured electrode assembly for rechargeable lithium batteries , 2009 .

[69]  Tammy Y. Olson,et al.  Synthesis of graphene aerogel with high electrical conductivity. , 2010, Journal of the American Chemical Society.

[70]  Bruce Dunn,et al.  Carbon aerogels for electrochemical applications , 1998 .

[71]  P. Taberna,et al.  Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer , 2006, Science.

[72]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[73]  G. Wicks,et al.  Silica embedded metal hydrides , 1998 .

[74]  R. Petricevic,et al.  Chapter 4.10.2. Carbon Aerogels , 2008 .

[75]  Flemming Besenbacher,et al.  Confinement of MgH2 nanoclusters within nanoporous aerogel scaffold materials. , 2009, ACS nano.

[76]  L. Dao,et al.  Synthesis and electrochemical capacitance of binderless nanocomposite electrodes formed by dispersion of carbon nanotubes and carbon aerogels , 2007 .

[77]  O. Nilsson,et al.  Thermal and electrical conductivity of monolithic carbon aerogels , 1993 .

[78]  M. Dresselhaus,et al.  Iron-doped carbon aerogels: novel porous substrates for direct growth of carbon nanotubes. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[79]  P. Achard,et al.  Highly porous PEM fuel cell cathodes based on low density carbon aerogels as Pt-support: Experimental study of the mass-transport losses , 2009 .

[80]  D. Rolison,et al.  Electroless Deposition of Nanoscale MnO2 on Ultraporous Carbon Nanoarchitectures: Correlation of Evolving Pore-Solid Structure and Electrochemical Performance , 2008 .

[81]  S. Litster,et al.  PEM fuel cell electrodes , 2004 .

[82]  M. Ritala,et al.  Ruthenium/aerogel nanocomposites via atomic layer deposition , 2007 .

[83]  Seung M. Oh,et al.  Novel synthesis of porous carbons with tunable pore size by surfactant-templated sol-gel process and carbonisation. , 2002, Chemical communications.

[84]  J. Satcher,et al.  Homogeneous Incorporation of Metal Nanoparticles into Ordered Macroporous Carbons , 2003 .

[85]  B. D. Kay,et al.  Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. , 2005, Angewandte Chemie.

[86]  P. Achard,et al.  Highly dispersed platinum on carbon aerogels as supported catalysts for PEM fuel cell-electrodes: comparison of two different synthesis paths , 2004 .

[87]  Andreas Stein,et al.  Functionalization of Porous Carbon Materials with Designed Pore Architecture , 2009 .

[88]  Bruce Dunn,et al.  Three-dimensional battery architectures. , 2004, Chemical reviews.

[89]  T. Baumann,et al.  Enhanced thermal transport in carbon aerogel nanocomposites containing double-walled carbon nanotubes , 2009 .

[90]  Y. Tong,et al.  Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[91]  P. Carrott,et al.  New carbon materials with high porosity in the 1―7 nm range obtained by chemical activation with phosphoric acid of resorcinol―formaldehyde aerogels , 2009 .

[92]  Brent Fultz,et al.  Measurements of hydrogen spillover in platinum doped superactivated carbon. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[93]  J. Fricke,et al.  Carbon Aerogels as Electrode Material in Supercapacitors , 1997 .

[94]  Sarmimala Hore,et al.  Synthesis of Hierarchically Porous Carbon Monoliths with Highly Ordered Microstructure and Their Application in Rechargeable Lithium Batteries with High‐Rate Capability , 2007 .

[95]  J. Fricke,et al.  Planar fibre reinforced carbon aerogels for application in PEM fuel cells , 2001 .

[96]  G. Cao,et al.  Activated carbon cryogels for low pressure methane storage , 2006 .

[97]  J. Tse,et al.  Graphene nanostructures as tunable storage media for molecular hydrogen. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[98]  M. Boudart,et al.  Surface Diffusion of Hydrogen on Carbon , 1964 .

[99]  J. Georgiadis,et al.  Science and technology for water purification in the coming decades , 2008, Nature.

[100]  P. M. Biesheuvel,et al.  Membrane capacitive deionization , 2010 .

[101]  X. Zhao,et al.  Characterization of a zeolite-templated carbon for H2 storage application , 2009 .

[102]  A. Lu,et al.  Aqueous Synthesis of Ordered Mesoporous Carbon via Self-Assembly Catalyzed by Amino Acid , 2008 .

[103]  K. Denbigh,et al.  The Principles of Chemical Equilibrium , 1956 .

[104]  T. Baumann,et al.  High surface area carbon aerogels as porous substrates for direct growth of carbon nanotubes. , 2010, Chemical communications.

[105]  T. Baumann,et al.  Influence of sodium dodecylbenzene sulfonate on the structure and properties of carbon aerogels , 2010 .

[106]  Tammy Y. Olson,et al.  High Surface Area, sp(2)-Cross-Linked Three-Dimensional Graphene Monoliths. , 2011, The journal of physical chemistry letters.

[107]  Y. Oren,et al.  Water desalting by means of electrochemical parametric pumping , 1983 .

[108]  T. Baumann,et al.  Toward New Candidates for Hydrogen Storage: High-Surface-Area Carbon Aerogels , 2006 .

[109]  Zhong Jin,et al.  Solution-phase synthesis of heteroatom-substituted carbon scaffolds for hydrogen storage. , 2010, Journal of the American Chemical Society.

[110]  A. F. Gross,et al.  Hierarchical carbon foams with independently tunable mesopore and macropore size distributions. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[111]  S. Bent,et al.  Controlling Atomic Layer Deposition of TiO2 in Aerogels through Surface Functionalization , 2009 .

[112]  Bruce Dunn,et al.  Hierarchical battery electrodes based on inverted opal structures , 2002 .

[113]  T. Baumann,et al.  Atomic Layer Deposition of Uniform Metal Coatings on Highly Porous Aerogel Substrates , 2006 .

[114]  T. Baumann,et al.  Mechanisms of atomic layer deposition on substrates with ultrahigh aspect ratios. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[115]  G. Cao,et al.  Coherent carbon cryogel-ammonia borane nanocomposites for H2 storage. , 2007, The journal of physical chemistry. B.

[116]  Ping Liu,et al.  Fabrication and hydrogen sorption behaviour of nanoparticulate MgH2 incorporated in a porous carbon host , 2009, Nanotechnology.

[117]  Ernest Yeager,et al.  Differential Capacitance Study on the Basal Plane of Stress-Annealed Pyrolytic Graphite , 1972 .

[118]  B. Conway Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage , 1991 .

[119]  T. Horie,et al.  Hierarchical porous carbon from cell assemblies of rice husk for in vivo applications , 2010 .

[120]  A. Züttel,et al.  Complex hydrides for hydrogen storage. , 2007, Chemical reviews.

[121]  T. Baumann,et al.  High surface area carbon aerogel monoliths with hierarchical porosity , 2008 .

[122]  Yong-Hyun Kim,et al.  Nondissociative adsorption of H2 molecules in light-element-doped fullerenes. , 2006, Physical review letters.

[123]  Sergei O. Kucheyev,et al.  Mechanically robust and electrically conductive carbon nanotube foams , 2009 .

[124]  Dingcai Wu,et al.  Structure and adsorption properties of activated carbon aerogels , 2006 .

[125]  Chueh-Yang Liu,et al.  Atomic layer deposition of platinum nanoparticles on carbon nanotubes for application in proton-exchange membrane fuel cells. , 2009, Small.

[126]  R. Mokaya,et al.  Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. , 2007, Journal of the American Chemical Society.

[127]  Joseph C. Farmer,et al.  Capacitive Deionization of NaCl and NaNO3 Solutions with Carbon Aerogel Electrodes , 1996 .

[128]  S. Bhatia,et al.  Optimum conditions for adsorptive storage. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[129]  M. Dresselhaus,et al.  Formation of graphitic structures in cobalt- and nickel-doped carbon aerogels. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[130]  F. Besenbacher,et al.  A reversible nanoconfined chemical reaction. , 2010, ACS nano.

[131]  Y. Oren,et al.  Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review) , 2008 .

[132]  S. Bent,et al.  Ultralow loading Pt nanocatalysts prepared by atomic layer deposition on carbon aerogels. , 2008, Nano letters.

[133]  Jeffrey W Long,et al.  Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. , 2007, Nano letters.

[134]  H. Tian,et al.  Enhanced hydrogen storage capacity in carbon aerogels treated with KOH , 2009 .

[135]  S. Shiraishi,et al.  Electrochemical reaction of fructose dehydrogenase on carbon cryogel electrodes with controlled pore sizes , 2010 .