Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates

New efficient and accurate numerical methods are proposed to compute ground states and dynamics of dipolar Bose-Einstein condensates (BECs) described by a three-dimensional (3D) Gross-Pitaevskii equation (GPE) with a dipolar interaction potential. Due to the high singularity in the dipolar interaction potential, it brings significant difficulties in mathematical analysis and numerical simulations of dipolar BECs. In this paper, by decoupling the two-body dipolar interaction potential into short-range (or local) and long-range interactions (or repulsive and attractive interactions), the GPE for dipolar BECs is reformulated as a Gross-Pitaevskii-Poisson type system. Based on this new mathematical formulation, we prove rigorously existence and uniqueness as well as nonexistence of the ground states, and discuss the existence of global weak solution and finite time blow-up of the dynamics in different parameter regimes of dipolar BECs. In addition, a backward Euler sine pseudospectral method is presented for computing the ground states and a time-splitting sine pseudospectral method is proposed for computing the dynamics of dipolar BECs. Due to the adoption of new mathematical formulation, our new numerical methods avoid evaluating integrals with high singularity and thus they are more efficient and accurate than those numerical methods currently used in the literatures for solving the problem. Extensive numerical examples in 3D are reported to demonstrate the efficiency and accuracy of our new numerical methods for computing the ground states and dynamics of dipolar BECs.

[1]  Catherine Sulem,et al.  The nonlinear Schrödinger equation , 2012 .

[2]  K. Goral,et al.  Ground state and elementary excitations of single and binary Bose-Einstein condensates of trapped dipolar gases , 2002 .

[3]  Axel Pelster,et al.  Bose-Einstein condensation temperature of dipolar gas in anisotropic harmonic trap , 2007 .

[4]  John L. Bohn,et al.  Bogoliubov modes of a dipolar condensate in a cylindrical trap (13 pages) , 2006 .

[5]  Weizhu Bao Ground States and Dynamics of Multicomponent Bose-Einstein Condensates , 2004, Multiscale Model. Simul..

[6]  Christof Sparber,et al.  Existence of solitary waves in dipolar quantum gases , 2009, 0910.5369.

[7]  Jie Shen,et al.  Spectral and High-Order Methods with Applications , 2006 .

[8]  Jeremy M. Sage,et al.  Optical production of ultracold polar molecules , 2006 .

[9]  S. L. Cornish,et al.  Collapse times of dipolar Bose-Einstein condensates , 2008, 0809.4294.

[10]  T. Koch,et al.  Expansion dynamics of a dipolar Bose-Einstein condensate (10 pages) , 2006 .

[11]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[12]  I-Liang Chern,et al.  BOSE-EINSTEIN CONDENSATION , 2021, Structural Aspects of Quantum Field Theory and Noncommutative Geometry.

[13]  L You,et al.  Calibrating dipolar interaction in an atomic condensate. , 2004, Physical review letters.

[14]  Shu-Ming Chang,et al.  Gauss-Seidel-type methods for energy states of a multi-component Bose-Einstein condensate , 2005 .

[15]  Elliott H. Lieb,et al.  Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional , 1999, math-ph/9908027.

[16]  M. Pi,et al.  Vortices in Bose-Einstein condensates with dominant dipolar interactions , 2009, 0906.4259.

[17]  Weizhu Bao,et al.  Ground, Symmetric and Central Vortex States in Rotating Bose-Einstein Condensates , 2005 .

[18]  Baowen Li,et al.  Symmetry breaking and self-trapping of a dipolar Bose-Einstein condensate in a double-well potential , 2009 .

[19]  Mechthild Thalhammer,et al.  A minimisation approach for computing the ground state of Gross-Pitaevskii systems , 2009, J. Comput. Phys..

[20]  H. Pu,et al.  Manifestations of the roton mode in dipolar Bose-Einstein condensates. , 2008, Physical review letters.

[21]  W. Ketterle,et al.  Bose-Einstein condensation , 1997 .

[22]  Weizhu Bao,et al.  Ground-state solution of Bose--Einstein condensate by directly minimizing the energy functional , 2003 .

[23]  Christof Sparber,et al.  On the Gross–Pitaevskii equation for trapped dipolar quantum gases , 2008, 0805.0716.

[24]  A. M. Martin,et al.  Structure formation during the collapse of a dipolar atomic Bose-Einstein condensate , 2008, 0810.2028.

[25]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[26]  Claudia Eberlein,et al.  Vortex in a trapped Bose-Einstein condensate with dipole-dipole interactions , 2006, cond-mat/0608316.

[27]  L. Santos,et al.  Transverse instability of straight vortex lines in dipolar Bose-Einstein condensates. , 2008, Physical review letters.

[28]  L. You,et al.  Expansion of a dipolar condensate , 2003 .

[29]  P L Gould,et al.  Photoassociative production and trapping of ultracold KRb molecules. , 2004, Physical review letters.

[30]  John L. Bohn,et al.  Stability and excitations of a dipolar Bose-Einstein condensate with a vortex , 2008, 0811.1233.

[31]  Succi,et al.  Ground state of trapped interacting bose-einstein condensates by an explicit imaginary-time algorithm , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  Department of Physics,et al.  Optical production of ultracold polar molecules. , 2005 .

[33]  I Carusotto,et al.  Dipole polarizability of a trapped superfluid Fermi gas. , 2006, Physical review letters.

[34]  A. Griesmaier,et al.  Bose-Einstein condensation of chromium. , 2005, Physical review letters.

[35]  S. Giovanazzi,et al.  Exact solution of the Thomas-Fermi equation for a trapped Bose-Einstein condensate with dipole-dipole interactions , 2003, cond-mat/0311100.

[36]  Qiang Du,et al.  Computing the Ground State Solution of Bose-Einstein Condensates by a Normalized Gradient Flow , 2003, SIAM J. Sci. Comput..

[37]  Masahito Ueda,et al.  d-wave collapse and explosion of a dipolar bose-einstein condensate. , 2008, Physical review letters.

[38]  Jian Zhang,et al.  Vortex lattices in planar Bose-Einstein condensates with dipolar interactions. , 2005, Physical review letters.

[39]  Tapash Chakraborty,et al.  The ground state. , 2006 .

[40]  P B Blakie,et al.  Numerical method for evolving the dipolar projected Gross-Pitaevskii equation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Tsin-Fu Jiang,et al.  Ground state of the dipolar Bose-Einstein condensate , 2006 .

[42]  B. I. Schnieder,et al.  Numerical approach to the ground and excited states of a Bose-Einstein condensed gas confined in a completely anisotropic trap , 1999 .

[43]  L. You,et al.  Trapped condensates of atoms with dipole interactions , 2001 .

[44]  Luis Santos,et al.  Soliton-soliton scattering in dipolar Bose-Einstein condensates , 2007 .

[45]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[46]  B. Malomed,et al.  Anisotropic solitons in dipolar bose-einstein condensates. , 2007, Physical review letters.

[47]  K. Rzazewski,et al.  Bose-Einstein condensation with magnetic dipole-dipole forces , 2000 .

[48]  L. Santos,et al.  Two-dimensional bright solitons in dipolar Bose-Einstein condensates , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[49]  H. Pu,et al.  Vortex structures in dipolar condensates , 2006 .

[50]  P. Markowich,et al.  Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.

[51]  Yanzhi Zhang,et al.  DYNAMICS OF THE GROUND STATE AND CENTRAL VORTEX STATES IN BOSE–EINSTEIN CONDENSATION , 2005 .

[52]  James J. Valentini,et al.  Subkelvin Cooling NO Molecules via "Billiard-like" Collisions with Argon , 2003, Science.

[53]  Santos,et al.  Bose-einstein condensation in trapped dipolar gases , 2000, Physical review letters.

[54]  L. You,et al.  Trapped atomic condensates with anisotropic interactions , 2000 .

[55]  Stefano Giovanazzi,et al.  Exact hydrodynamics of a trapped dipolar Bose-Einstein condensate. , 2004, Physical review letters.