Unveiling positive impacts of fluorine anion doping on extraordinary catalytic activity of bifunctional-layered double perovskite electrodes for solid oxide fuel cells and electrolysis cells

[1]  H Zhao,et al.  Addressing the origin of highly catalytic activity of A-site Sr-doped perovskite cathodes for intermediate-temperature solid oxide fuel cells , 2022, Electrochemistry Communications.

[2]  Zhenhua Wang,et al.  Constructing highly active alloy-perovskite interfaces for efficient electrochemical CO2 reduction reaction , 2022, Separation and Purification Technology.

[3]  L. Huo,et al.  Phosphatizing Engineering of Perovskite Oxide Nanofibers for Hydrogen Evolution Reaction to Achieve Extraordinary Electrocatalytic Performance , 2022, Advanced Functional Materials.

[4]  Chang-jiu Li,et al.  Recent advancements, doping strategies and the future perspective of perovskite-based solid oxide fuel cells for energy conversion , 2022, Chemical Engineering Journal.

[5]  Seokhee Lee,et al.  Pd and GDC Co-infiltrated LSCM cathode for high-temperature CO2 electrolysis using solid oxide electrolysis cells , 2020 .

[6]  Yingying Liu,et al.  Synergistic Interaction of Double/Simple Perovskite Heterostructure for Efficient Hydrogen Evolution Reaction at High Current Density. , 2020, Small methods.

[7]  Zhihong Du,et al.  A SmBaCo2O5+δ double perovskite with epitaxially grown Sm0.2Ce0.8O2−δ nanoparticles as a promising cathode for solid oxide fuel cells , 2020, Journal of Materials Chemistry A.

[8]  Ke-ning Sun,et al.  Attenuating a metal–oxygen bond of a double perovskite oxide via anion doping to enhance its catalytic activity for the oxygen reduction reaction , 2020 .

[9]  K. Hellgardt,et al.  Electrical conductivities and microstructures of LSM, LSM-YSZ and LSM-YSZ/LSM cathodes fabricated on YSZ electrolyte hollow fibres by dip-coating , 2020 .

[10]  Naiqing Zhang,et al.  Probing oxygen vacancy effect on oxygen reduction reaction of the NdBaCo2O5+δ cathode for solid oxide fuel cells , 2020, Journal of Power Sources.

[11]  L. Hultman,et al.  Compromising science by ignorant instrument calibration - need to revisit half a century of published XPS data. , 2020, Angewandte Chemie.

[12]  Xiong Zhang,et al.  Effective promotion of oxygen reduction activity by rare earth doping in simple perovskite cathodes for intermediate-temperature solid oxide fuel cells , 2020 .

[13]  T. Yamaguchi,et al.  Nanocomposite electrodes for high current density over 3 A cm−2 in solid oxide electrolysis cells , 2019, Nature Communications.

[14]  H Zhao,et al.  Ta-doped PrBa0.94Co2-Ta O5+ as promising oxygen electrodes: A focused study on catalytic oxygen reduction reaction activity, stability and CO2-durability , 2019, Journal of Power Sources.

[15]  S. Jiang,et al.  Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells – A review , 2019, International Journal of Hydrogen Energy.

[16]  D. Morgan,et al.  Assessing Correlations of Perovskite Catalytic Performance with Electronic Structure Descriptors , 2019, Chemistry of Materials.

[17]  C. Xia,et al.  Thermal cycling durability improved by doping fluorine to PrBaCo2O5+δ as oxygen reduction reaction electrocatalyst in intermediate-temperature solid oxide fuel cells , 2018, Journal of Power Sources.

[18]  Meilin Liu,et al.  A highly active, CO2-tolerant electrode for the oxygen reduction reaction , 2018 .

[19]  Mingrui Wei,et al.  Pd-doped La0.6Sr0.4Co0.2Fe0.8O3−δ perovskite oxides as cathodes for intermediate temperature solid oxide fuel cells , 2018, Solid State Ionics.

[20]  E. Urones-Garrote,et al.  Influence of the synthesis conditions on the crystal structure and properties of GdBaCo2−xFexO5+δ oxides as air-electrodes for intermediate temperature solid oxide fuel cells , 2017 .

[21]  Zongping Shao,et al.  Anion Doping: A New Strategy for Developing High‐Performance Perovskite‐Type Cathode Materials of Solid Oxide Fuel Cells , 2017 .

[22]  J. Chen,et al.  A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology. , 2017, Chemical Society reviews.

[23]  Yun Gan,et al.  Generalized electrical conductivity relaxation approach to determine electrochemical kinetic properties for MIECs , 2016 .

[24]  Chaehyun Lim,et al.  Influence of Ca-doping in layered perovskite PrBaCo2O5+δ on the phase transition and cathodic performance of a solid oxide fuel cell , 2016 .

[25]  Mogens Bjerg Mogensen,et al.  Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers , 2016, Nature Energy.

[26]  Giovanni Dotelli,et al.  Cobalt based layered perovskites as cathode material for intermediate temperature Solid Oxide Fuel Cells: A brief review , 2015 .

[27]  A. Manthiram,et al.  Layered LnBaCo2O5+δ perovskite cathodes for solid oxide fuel cells: An overview and perspective , 2015 .

[28]  F. Ciucci,et al.  A molecular dynamics study of oxygen ion diffusion in A-site ordered perovskite PrBaCo(2)O(5.5): data mining the oxygen trajectories. , 2015, Physical chemistry chemical physics : PCCP.

[29]  Guntae Kim,et al.  The effect of calcium doping on the improvement of performance and durability in a layered perovskite cathode for intermediate-temperature solid oxide fuel cells , 2015 .

[30]  T. Ishihara,et al.  Development of double-perovskite compounds as cathode materials for low-temperature solid oxide fuel cells. , 2014, Angewandte Chemie.

[31]  Thibault Broux,et al.  High temperature structural stability, electrical properties and chemical reactivity of NdBaCo2−xMnxO5+δ (0 ≤ x ≤ 2) for use as cathodes in solid oxide fuel cells , 2014 .

[32]  H Zhao,et al.  Evaluation of layered perovskites YBa1−xSrxCo2O5+δ as cathodes for intermediate-temperature solid oxide fuel cells , 2014 .

[33]  Guntae Kim,et al.  High redox and performance stability of layered SmBa(0.5)Sr(0.5)Co(1.5)Cu(0.5)O(5+δ) perovskite cathodes for intermediate-temperature solid oxide fuel cells. , 2013, Physical chemistry chemical physics : PCCP.

[34]  Xuening Jiang,et al.  Scandium-doped PrBaCo2−xScxO6−δ oxides as cathode material for intermediate-temperature solid oxide fuel cells , 2013 .

[35]  E. Ivers-Tiffée,et al.  Secondary Phase Formation in Ba0.5Sr0.5Co0.8Fe0.2O3–d Studied by Electron Microscopy , 2013 .

[36]  J. Irvine,et al.  Characterization of layered perovskite oxides NdBa1−xSrxCo2O5+δ (x = 0 and 0.5) as cathode materials for IT-SOFC , 2012 .

[37]  Joongmyeon Bae,et al.  Electrochemical performance of solid oxide electrolysis cell electrodes under high-temperature coele , 2011 .

[38]  Zongping Shao,et al.  Surface exchange and bulk diffusion properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ mixed conductor , 2011 .

[39]  K. Efimov,et al.  Transmission Electron Microscopy Study of Ba0.5Sr0.5Co0.8Fe0.2O3−δ Perovskite Decomposition at Intermediate Temperatures , 2010 .

[40]  J. Kilner,et al.  Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells , 2010 .

[41]  Yaohui Zhang,et al.  Thermal expansion and electrochemical properties of Ni-doped GdBaCo2O5+δ double-perovskite type oxides , 2010 .

[42]  T. Mizokawa,et al.  Metallic versus insulating behavior in the A -site ordered perovskite oxides A Cu3 Co4 O12 (A=Ca and Y) controlled by Mott and Zhang-Rice physics , 2009 .

[43]  Y. Bo,et al.  Microstructural characterization and electrochemical properties of Ba0.5Sr0.5Co0.8Fe0.2O3−δ and its application for anode of SOEC , 2008 .

[44]  D. Brett,et al.  Intermediate temperature solid oxide fuel cells. , 2008, Chemical Society reviews.

[45]  Zongping Shao,et al.  A high-performance cathode for the next generation of solid-oxide fuel cells , 2004, Nature.

[46]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[47]  Koichi Kobayashi,et al.  Characterization of LSM-YSZ composite electrode by ac impedance spectroscopy , 2001 .

[48]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[49]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[50]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[51]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[52]  Ying Xie,et al.  Addressing electrocatalytic activity and stability of LnBaCo2O5+δ perovskites for hydrogen evolution reaction by structural and electronic features , 2021 .

[53]  J. Maier,et al.  First Principles Calculations of Oxygen Vacancy Formation and Migration in Ba1−xSrxCo1−yFeyO3−δ Perovskites , 2011 .

[54]  C. Delmas,et al.  Electron Transfer Mechanisms upon Lithium Deintercalation from LiCoO2 to CoO2 Investigated by XPS , 2008 .

[55]  J. Bassat,et al.  Chemical oxygen diffusion coefficient measurement by conductivity relaxation—correlation between tracer diffusion coefficient and chemical diffusion coefficient , 2004 .

[56]  S. Singhal Solid Oxide Fuel Cells , 2003 .