Simulation of Multitemporal and Hyperspectral Vegetation Canopy Bidirectional Reflectance Using Detailed Virtual 3-D Canopy Models

The influence of plant and canopy architecture on canopy bidirectional reflectance and the bidirectional reflectance distribution function (BRDF) is the subject of this paper. To understand BRDF-influenced reflectance signals, this influence must be identified and quantified, which requires detailed knowledge concerning the structure and BRDF of the observed canopies. In situ BRDF measurements of canopies are time consuming and depend on the availability of a field goniometer. In contrast to field measurements, computer-based simulations of the canopy BRDF offer an alternative approach that considers parameter-driven setups of virtual canopies under constant illumination conditions. This paper presents the hyperspectral simulation of canopy reflectance (HySimCaR) system, which has been developed in the context of the EnMAP mission. This spectral, spatial, and temporal simulation system consists of detailed virtual 3-D cereal canopies of different phenological stages, whose geometries are linked to the corresponding spectral information. The system enables the simulation of realistic bidirectional reflectance spectra on the basis of virtual 3-D scenarios by incorporating any possible viewing position with ray-tracing techniques. The parameterization of a number of canopy structure parameters, such as phenological stage, row distance, and row orientation, enables the modeling of the bidirectional reflectance and, based on them, the approximation of the BRDF for many structurally different cereal canopies. HySimCaR has been validated with respect to structural and spectral accuracy using three cereal types, namely, wheat, rye, and barley, at 13 different phenological stages. The results show that the virtual cereal canopies are re-created in a realistic way, and it is possible to model their detailed canopy bidirectional reflectance and their BRDF using HySimCaR.

[1]  S. Sandmeier,et al.  Structure Analysis and Classification of Boreal Forests Using Airborne Hyperspectral Brdf Data from Asas Imagery and Processing Techniques Have Also Been Used Potential for Combining Both High Spectral Resolution And , 2022 .

[2]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[3]  Andrea Sacchetti,et al.  The PRISMA Program , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[4]  Yves Caraglio,et al.  Using SIR-C SAR data and the AMAP model for forest attributes retrieval and 3-D stand simulation , 2001 .

[5]  N. Goel Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data , 1988 .

[6]  Peter R. J. North,et al.  Three-dimensional forest light interaction model using a Monte Carlo method , 1996, IEEE Trans. Geosci. Remote. Sens..

[7]  Mathias Disney,et al.  Monte Carlo ray tracing in optical canopy reflectance modelling , 2000 .

[8]  W. Verhoef,et al.  PROSPECT+SAIL models: A review of use for vegetation characterization , 2009 .

[9]  A. Strahler,et al.  Geometric-Optical Bidirectional Reflectance Modeling of a Conifer Forest Canopy , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[10]  T. Painter,et al.  Reflectance quantities in optical remote sensing - definitions and case studies , 2006 .

[11]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[12]  Andrew S. Glassner,et al.  An introduction to ray tracing , 1989 .

[13]  Philip Lewis Three-dimensional plant modelling for remote sensing simulation studies using the Botanical Plant Modelling System , 1999 .

[14]  E. Kanemasu Seasonal canopy reflectance patterns of wheat, sorghum, and soybean , 1974 .

[15]  Christoph C. Borel,et al.  The radiosity method in optical remote sensing of structured 3-D surfaces , 1991 .

[16]  W. Gao,et al.  A simple bidirectional-reflectance model applied to a tallgrass canopy , 1993 .

[17]  Winfried Kurth,et al.  MORPHOLOGICAL MODELS OF PLANT GROWTH : POSSIBILITIES AND ECOLOGICAL RELEVANCE , 1994 .

[18]  Nadine Gobron,et al.  Radiation transfer model intercomparison (RAMI) exercise , 2001 .

[19]  Philip Lewis,et al.  Comparison of HYMAP/E-SAR data with models for optical reflectance and microwave scattering from vegetation canopies , 2002 .

[20]  John R. Miller,et al.  Four-Scale Linear Model for Anisotropic Reflectance (FLAIR) for plant canopies. I. Model description and partial validation , 2001, IEEE Trans. Geosci. Remote. Sens..

[21]  Hervé Rey,et al.  Using a 3-D virtual sunflower to simulate light capture at organ, plant and plot levels: contribution of organ interception, impact of heliotropism and analysis of genotypic differences. , 2007, Annals of botany.

[22]  Changming Liu,et al.  WHEAT Estimation of Winter Wheat Evapotranspiration under Water Stress with Two Semiempirical Approaches , 2003 .

[23]  G. Suits The calculation of the directional reflectance of a vegetative canopy , 1971 .

[24]  Winter wheat geometry identification by bidirectional canopy reflected spectrum , 2008 .

[25]  Frederic Teston,et al.  The PROBA/CHRIS mission: a low-cost smallsat for hyperspectral multiangle observations of the Earth surface and atmosphere , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Marc Jaeger,et al.  Basic concepts of computer simulation of plant growth , 1992, Journal of Biosciences.

[27]  F. E. Nicodemus,et al.  Geometrical considerations and nomenclature for reflectance , 1977 .

[28]  F. Tardieu,et al.  A whole-plant analysis of the dynamics of expansion of individual leaves of two sunflower hybrids. , 2003, Journal of experimental botany.

[29]  Yves Caraglio,et al.  Essai sur l'identification et la mise en oeuvre des paramètres nécessaires à la simulation d'une architecture végétale. Le logiciel AMAPSIM , 1997 .

[30]  J. Dauzat,et al.  Simulation des transferts radiatifs sur maquettes informatiques de couverts végétaux , 1991 .

[31]  D. Barthélémy,et al.  AmapSim: a structural whole-plant simulator based on botanical knowledge and designed to host external functional models. , 2007, Annals of botany.

[32]  Agnès Bégué Modeling hemispherical and directional radiative fluxes in regular-clumped canopies , 1992 .

[33]  D. Luquet,et al.  Effect of the vegetation clumping on the BRDF of a semi-arid grassland: comparison of the SAIL model and ray tracing method applied to a 3D computerized vegetation canopy , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[34]  Alan H. Strahler,et al.  A hybrid geometric optical-radiative transfer approach for modeling albedo and directional reflectance of discontinuous canopies , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[35]  Jean-Philippe Gastellu-Etchegorry,et al.  DART: a 3D model for simulating satellite images and studying surface radiation budget , 2004 .

[36]  F. Baret,et al.  Modeling maize canopy 3D architecture: Application to reflectance simulation , 1999 .

[37]  Luis Guanter,et al.  EeteS—The EnMAP End-to-End Simulation Tool , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[38]  Marc Jaeger,et al.  Plant models faithful to botanical structure and development , 1988, SIGGRAPH.

[39]  Mathias Disney,et al.  Biophysical parameter retrieval from forest and crop canopies in the optical and microwave domains using 3D models of canopy structure , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[40]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[41]  P. Prusinkiewicz,et al.  Quantitative Modeling of Arabidopsis Development1[w] , 2005, Plant Physiology.

[42]  J. Monteith,et al.  Principles of Environmental Physics , 2014 .

[43]  Philip Lewis,et al.  3D modelling of forest canopy structure for remote sensing simulations in the optical and microwave domains , 2006 .

[44]  Roberta E. Martin,et al.  PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments , 2008 .

[45]  W. Verhoef Light scattering by leaf layers with application to canopy reflectance modeling: The Scattering by Arbitrarily Inclined Leaves (SAIL) model , 1984 .

[46]  V. Demarez,et al.  Modeling radiative transfer in heterogeneous 3-D vegetation canopies , 1996 .

[47]  Narendra S. Goel,et al.  Two models for rapidly calculating bidirectional reflectance of complex vegetation scenes: Photon spread (PS) model and statistical photon spread (SPS) model , 1998 .

[48]  Yan Guo,et al.  Plant growth modeling and applications. Proceedings PMA09 : The Third International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications, Beijing, China, 9-13 November 2009 , 2010 .

[49]  R. Myneni,et al.  Radiative transfer in three dimensional leaf canopies , 1990 .

[50]  B. Andrieu,et al.  Computer stereo plotting for 3-D reconstruction of a maize canopy , 1995 .

[51]  Stefan R Sandmeier,et al.  Acquisition of bidirectional reflectance factor data with field goniometers , 2000 .

[52]  J. S. Aber,et al.  Low-cost field goniometer for multiangular reflectance measurements. , 2012 .

[53]  Kinsell L. Coulson,et al.  Effects of reflection properties of natural surfaces in aerial reconnaissance. , 1966, Applied optics.

[54]  Alan H. Strahler,et al.  An analytical hybrid GORT model for bidirectional reflectance over discontinuous plant canopies , 1999, IEEE Trans. Geosci. Remote. Sens..

[55]  N. Breda Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. , 2003, Journal of experimental botany.

[56]  Baghestani,et al.  Iranian winter wheat's (Triticum aestivum L.) interference with weeds: II. Growth analysis , 2006 .

[57]  S.A.W. Gerstl,et al.  The angular reflectance signature of the canopy hot spot in the optical regime , 1988 .

[58]  S. Sandmeier,et al.  Physical Mechanisms in Hyperspectral BRDF Data of Grass and Watercress , 1998 .

[59]  C. Woodcock,et al.  A hybrid geometric optical-radiative transfer approach for modeling albedo and directional reflectance of discontinuous canopies , 1995 .

[60]  W. Marsden I and J , 2012 .

[61]  P. de Reffye,et al.  A dynamic, architectural plant model simulating resource-dependent growth. , 2004, Annals of botany.

[62]  Michel M. Verstraete,et al.  Raytran: a Monte Carlo ray-tracing model to compute light scattering in three-dimensional heterogeneous media , 1998, IEEE Trans. Geosci. Remote. Sens..

[63]  A. Lindenmayer Mathematical models for cellular interactions in development. I. Filaments with one-sided inputs. , 1968, Journal of theoretical biology.

[64]  D. Auclair,et al.  Using plant architectural models for estimation of radiation transfer in a coconut-based agroforestry system , 2001, Agroforestry Systems.

[65]  Jerzy Cierniewski,et al.  Effects of Sun and view geometries on cotton bidirectional reflectance. Test of a geometrical model , 1995 .

[66]  John M. Norman,et al.  FROM ARTIFICIAL LIFE TO REAL LIFE: COMPUTER SIMULATION OF PLANT GROWTH∗ , 1991 .

[67]  Przemyslaw Prusinkiewicz,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.

[68]  Nadine Gobron,et al.  Horizontal radiation transport in 3-D forest canopies at multiple spatial resolutions: Simulated impact on canopy absorption , 2006 .

[69]  S. Gerstl,et al.  Radiation physics and modelling for off-nadir satellite sensing of non-Lambertian surfaces , 1986 .

[70]  U. Benz,et al.  The EnMAP hyperspectral imager—An advanced optical payload for future applications in Earth observation programmes , 2006 .