Insights into the reaction pathway of n-butane conversion over HZSM-5 zeolite at low temperature

[1]  Chaohe Yang,et al.  Comparative study of n -butane isomerization over SO 4 2− /Al 2 O 3 -ZrO 2 and HZSM-5 zeolites at low reaction temperatures , 2018 .

[2]  Chaohe Yang,et al.  Consequence of heterogeneity of active sites for reactivity mechanism of n -butane isomerization over SO 4 2− /ZrO 2 -Al 2 O 3 catalyst , 2017 .

[3]  Guozhu Liu,et al.  Analysis of reaction pathways for n-pentane cracking over zeolites to produce light olefins , 2017 .

[4]  Lijun Zhu,et al.  Surface chemistry and catalytic performance of amorphous NiB/Hβ catalyst for n-hexane isomerization , 2016 .

[5]  Li-Chiang Lin,et al.  Effects of Zeolite Structural Confinement on Adsorption Thermodynamics and Reaction Kinetics for Monomolecular Cracking and Dehydrogenation of n-Butane. , 2016, Journal of the American Chemical Society.

[6]  F. Jentoft,et al.  Mechanism of n-butane skeletal isomerization on H-mordenite and Pt/H-mordenite , 2015 .

[7]  Li-Chiang Lin,et al.  Adsorption Thermodynamics and Intrinsic Activation Parameters for Monomolecular Cracking of n-Alkanes on Brønsted Acid Sites in Zeolites , 2015 .

[8]  Ramin Karimzadeh,et al.  Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review , 2011 .

[9]  E. Iglesia,et al.  Catalytic hydrogenation of alkenes on acidic zeolites: Mechanistic connections to monomolecular alkane dehydrogenation reactions , 2011 .

[10]  J. Bilbao,et al.  Kinetic Modeling of n-Butane Cracking on HZSM-5 Zeolite Catalyst , 2010 .

[11]  Enrique Iglesia,et al.  Effects of partial confinement on the specificity of monomolecular alkane reactions for acid sites in side pockets of mordenite. , 2010, Angewandte Chemie.

[12]  Enrique Iglesia,et al.  Catalytic consequences of spatial constraints and acid site location for monomolecular alkane activation on zeolites. , 2009, Journal of the American Chemical Society.

[13]  A. Bhan,et al.  Entropy considerations in monomolecular cracking of alkanes on acidic zeolites , 2008 .

[14]  Bin Xu,et al.  Catalytic activity of Brønsted acid sites in zeolites: Intrinsic activity, rate-limiting step, and influence of the local structure of the acid sites , 2006 .

[15]  M. Lemos,et al.  Activation of C2–C4 alkanes over acid and bifunctional zeolite catalysts , 2006 .

[16]  E. Lotero,et al.  A comprehensive mechanistic pathway for n-butane isomerization on sulfated zirconia , 2006 .

[17]  Chunming Xu,et al.  FeHZSM-5 molecular sieves – Highly active catalysts for catalytic cracking of isobutane to produce ethylene and propylene , 2006 .

[18]  A. Stepanov,et al.  n-Butane conversion on sulfated zirconia: in situ13C MAS NMR monitoring of the kinetics of the 13C-label scrambling and isomerization , 2005 .

[19]  D. Murzin,et al.  Kinetic Study of n-Butane Isomerization over Pt−H-Mordenite , 2005 .

[20]  V. Parmon,et al.  Mechanism studies of the conversion of 13C-labeled n-butane on zeolite H-ZSM-5 by using 13C magic angle spinning NMR spectroscopy and GC-MS analysis. , 2005, Chemistry.

[21]  J. Bokhoven,et al.  Observation of a compensation relation for monomolecular alkane cracking by zeolites: the dominant role of reactant sorption , 2004 .

[22]  S. Arzumanov,et al.  n-Butane conversion on sulfated zirconia: the mechanism of isomerization and 13C-label scrambling as studied by in situ 13C MAS NMR and ex situ GC-MS , 2003 .

[23]  J. Dumesic,et al.  Reaction kinetics study and analysis of reaction schemes for isobutane conversion over USY zeolite , 2002 .

[24]  A. Stepanov,et al.  n-Pentane Conversion on Sulfated Zirconia in the Absence and Presence of Carbon Monoxide: Evidence for Monomolecular Mechanism of Isomerization from the 13C MAS NMR Study , 2001 .

[25]  Y. Kissin CHEMICAL MECHANISMS OF CATALYTIC CRACKING OVER SOLID ACIDIC CATALYSTS: ALKANES AND ALKENES , 2001 .

[26]  T. Okuhara,et al.  Direct evidence of intramolecular rearrangement in skeletal isomerization of n-butane over bifunctional catalysts , 2001 .

[27]  G. Marin,et al.  A Fundamental Kinetic Model for the Catalytic Cracking of Alkanes on a USY Zeolite in the Presence of Coke Formation , 2001 .

[28]  B. Gates,et al.  The Haag–Dessau mechanism of protolytic cracking of alkanes☆ , 2000 .

[29]  A. Corma,et al.  Current views on the mechanism of catalytic cracking , 2000 .

[30]  H. Matsuhashi,et al.  Skeletal isomerization mechanism of alkanes over solid superacid of sulfated zirconia , 1999 .

[31]  M. V. Frash,et al.  Quantum-chemical modeling of the hydrocarbon transformations in acid zeolite catalysts , 1999 .

[32]  W. Sachtler,et al.  Alkane isomerization over sulfated zirconia and other solid acids , 1998 .

[33]  M.-Trung Tran,et al.  Isomerization ofn-Butane over H-Mordenites under Nitrogen and Hydrogen: Influence of the Acid Site Density , 1998 .

[34]  V. Kazansky,et al.  Cracking of Hydrocarbons on Zeolite Catalysts: Density Functional and Hartree−Fock Calculations on the Mechanism of the β-Scission Reaction , 1998 .

[35]  J. Lercher,et al.  Dehydrogenation of light alkanes over zeolites , 1997 .

[36]  J. Lercher,et al.  Improving the stability of H-mordenite for n-butane isomerization , 1997 .

[37]  J. Lercher,et al.  On the role of the pore size and tortuosity for sorption of aalkanes in molecular sieves , 1997 .

[38]  J. Lercher,et al.  Alkane sorption in molecular sieves: The contribution of ordering, intermolecular interactions, and sorption on Brønsted acid sites , 1997 .

[39]  V. Kazansky,et al.  Quantumchemical study of the isobutane cracking on zeolites , 1996 .

[40]  B. Gates,et al.  Butane disproportionation catalyzed by sulfated zirconia promoted with iron and manganese , 1996 .

[41]  A. Stepanov,et al.  In Situ 13C Solid‐State NMR and Ex Situ GC–MS Analysis of the Products of tert‐Butyl Alcohol Dehydration on H‐ZSM‐5 Zeolite Catalyst , 1996 .

[42]  A. Corma,et al.  Theoretical Study on the Mechanism of the Superacid-Catalyzed Unimolecular Isomerization of n-Butane and 1-Butene , 1996 .

[43]  J. Lercher,et al.  Monomolecular conversion of light alkanes over H-ZSM-5 , 1995 .

[44]  G. Kramer,et al.  Reactivity Theory of Zeolitic Broensted Acidic Sites , 1995 .

[45]  M. Misono,et al.  Skeletal isomerization of n-butane over caesium hydrogen salts of 12-tungstophosphoric acid , 1995 .

[46]  N. Gnep,et al.  Particular Aspects of Zeolite Catalyzed Reactions , 1980 .