An Efficient Algorithm for Finding Continuous Coherent Evolution Bicluster in Time-Series Data

Most traditional biclustering algorithms focus on biclustering model on non-continuous column, which are not suitable for the analysis of the time series gene expression data. We proposes an effective and exact algorithm, which can be used to mine biclusters with coherent evolution on the contiguous columns as well as the complementary biclusters and time-lagged biclusters for the analysis of time series gene expression data. The experimental results show that the algorithm can find biclusters with statistical significance and strong biological relevance. We extend it to the currency data analysis in the financial field and obtain meaningful results.

[1]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[2]  Ya Zhang,et al.  A time-series biclustering algorithm for revealing co-regulated genes , 2005, International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II.

[3]  Dan Wu,et al.  Indexable online time series segmentation with error bound guarantee , 2013, World Wide Web.

[4]  George M. Church,et al.  Biclustering of Expression Data , 2000, ISMB.

[5]  David Martin,et al.  GOToolBox: functional analysis of gene datasets based on Gene Ontology , 2004, Genome Biology.

[6]  P. Törönen,et al.  Analysis of gene expression data using self‐organizing maps , 1999, FEBS letters.

[7]  Arlindo L. Oliveira,et al.  A Linear Time Biclustering Algorithm for Time Series Gene Expression Data , 2005, WABI.

[8]  Yong Wang,et al.  Detecting coherent local patterns from time series gene expression data by a temporal biclustering method , 2011, 2011 IEEE International Conference on Systems Biology (ISB).

[9]  Hong Yan,et al.  Bicluster Analysis of Currency Exchange Rates , 2008, Soft Computing Applications in Business.

[10]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[11]  Richard M. Karp,et al.  Discovering local structure in gene expression data: the order-preserving submatrix problem , 2002, RECOMB '02.

[12]  Philip S. Yu,et al.  Enhanced biclustering on expression data , 2003, Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings..

[13]  J. Hartigan Direct Clustering of a Data Matrix , 1972 .

[14]  Arlindo L. Oliveira,et al.  An Efficient Biclustering Algorithm for Finding Genes with Similar Patterns in Time-series Expression Data , 2007, APBC.

[15]  Kian-Lee Tan,et al.  Identifying time-lagged gene clusters using gene expression data , 2005, Bioinform..

[16]  G. Getz,et al.  Coupled two-way clustering analysis of gene microarray data. , 2000, Proceedings of the National Academy of Sciences of the United States of America.