Organic matter in extraterrestrial water-bearing salt crystals

Abundant organic compounds were detected in brine-bearing halite crystals from a hydrovolcanically active asteroid. Direct evidence of complex prebiotic chemistry from a water-rich world in the outer solar system is provided by the 4.5-billion-year-old halite crystals hosted in the Zag and Monahans (1998) meteorites. This study offers the first comprehensive organic analysis of the soluble and insoluble organic compounds found in the millimeter-sized halite crystals containing brine inclusions and sheds light on the nature and activity of aqueous fluids on a primitive parent body. Associated with these trapped brines are organic compounds exhibiting wide chemical variations representing organic precursors, intermediates, and reaction products that make up life’s precursor molecules such as amino acids. The organic compounds also contain a mixture of C-, O-, and N-bearing macromolecular carbon materials exhibiting a wide range of structural order, as well as aromatic, ketone, imine, and/or imidazole compounds. The enrichment in 15N is comparable to the organic matter in pristine Renazzo-type carbonaceous chondrites, which reflects the sources of interstellar 15N, such as ammonia and amino acids. The amino acid content of the Zag halite deviates from the meteorite matrix, supporting an exogenic origin of the halite, and therefore, the Zag meteorite contains organics synthesized on two distinct parent bodies. Our study suggests that the asteroidal parent body where the halite precipitated, potentially asteroid 1 Ceres, shows evidence for a complex combination of biologically and prebiologically relevant molecules.

[1]  M. Zolensky,et al.  Investigation of organo-carbonate associations in carbonaceous chondrites by Raman spectroscopy , 2017 .

[2]  M. Zolensky,et al.  One-pot synthesis of amino acid precursors with insoluble organic matter in planetesimals with aqueous activity , 2017, Science Advances.

[3]  G. Cody,et al.  The Peculiar Nature of Nitrogen in Organic Solids from Chondritic Meteorites , 2017 .

[4]  F. Vilas,et al.  Ceres: Sulfur deposits and graphitized carbon , 2016 .

[5]  David A. Williams,et al.  Cryovolcanism on Ceres , 2016, Science.

[6]  R. Mugnuolo,et al.  Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres , 2016, Nature.

[7]  H. McSween,et al.  Rationalizing the Composition and Alteration of Ceres , 2016 .

[8]  Y Takeichi,et al.  Design and performance of a compact scanning transmission X-ray microscope at the Photon Factory. , 2016, The Review of scientific instruments.

[9]  A. Burton,et al.  Amino acid analyses of R and CK chondrites , 2015 .

[10]  G. Cody,et al.  A kinetic study of the formation of organic solids from formaldehyde: Implications for the origin of extraterrestrial organic solids in primitive Solar System objects , 2015 .

[11]  M. Abe,et al.  H, C, and N isotopic compositions of Hayabusa category 3 organic samples , 2014, Earth, Planets and Space.

[12]  Y. Takahashi,et al.  Development of a Compact Scanning Transmission X-Ray Microscope , 2014 .

[13]  B. Carry,et al.  Solar System evolution from compositional mapping of the asteroid belt , 2014, Nature.

[14]  D. Teyssier,et al.  Localized sources of water vapour on the dwarf planet (1) Ceres , 2014, Nature.

[15]  M. Burchell,et al.  Shock synthesis of amino acids from impacting cometary and icy planet surface analogues , 2013 .

[16]  G. Cody,et al.  Isotopic and chemical variation of organic nanoglobules in primitive meteorites , 2013 .

[17]  M. Sephton,et al.  Amino acid analyses of type 3 chondrites Colony, Ornans, Chainpur, and Bishunpur , 2012 .

[18]  R. Bowden,et al.  The Provenances of Asteroids, and Their Contributions to the Volatile Inventories of the Terrestrial Planets , 2012, Science.

[19]  Christopher D. K. Herd,et al.  Unusual nonterrestrial l‐proteinogenic amino acid excesses in the Tagish Lake meteorite , 2012 .

[20]  D. Britt,et al.  Methane from UV-irradiated carbonaceous chondrites under simulated Martian conditions , 2012 .

[21]  S. Pizzarello Catalytic syntheses of amino acids and their significance for nebular and planetary chemistry , 2012 .

[22]  A. Burton,et al.  A propensity for n‐ω‐amino acids in thermally altered Antarctic meteorites , 2012 .

[23]  M. Zolensky,et al.  Mineral Inclusions in Monahans and Zag Halites: Evidence of the Originating Body , 2011 .

[24]  A. Steele,et al.  Carbonaceous Chondrite Groups Discerned Using Raman Spectral Parameters , 2011 .

[25]  S. Sandford,et al.  Complex aromatic hydrocarbons in Stardust samples collected from comet 81P/Wild 2 , 2010 .

[26]  M. Burchell,et al.  Capture effects in carbonaceous material: A Stardust analogue study , 2009 .

[27]  S. Messenger,et al.  Isotopic imaging of refractory inclusions in meteorites with the NanoSIMS 50L , 2008 .

[28]  G. Cody,et al.  Organic thermometry for chondritic parent bodies , 2008 .

[29]  T. Tyliszczak,et al.  Quantitative organic and light‐element analysis of comet 81P/Wild 2 particles using C‐, N‐, and O‐μ‐XANES , 2008 .

[30]  Tom Regier,et al.  Nitrogen K-edge XANES - an overview of reference compounds used to identify unknown organic nitrogen in environmental samples. , 2007, Journal of synchrotron radiation.

[31]  A. Steele,et al.  Comprehensive imaging and Raman spectroscopy of carbonate globules from Martian meteorite ALH 84001 and a terrestrial analogue from Svalbard , 2007 .

[32]  George D. Cody,et al.  The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter , 2007 .

[33]  P. Ehrenfreund,et al.  Amino acid composition, petrology, geochemistry, 14C terrestrial age and oxygen isotopes of the Shişr 033 CR chondrite , 2007 .

[34]  Petr Pravec,et al.  Direct Detection of the Asteroidal YORP Effect , 2007, Science.

[35]  James H. Doty,et al.  Amino acid analyses of Antarctic CM2 meteorites using liquid chromatography‐time of flight‐mass spectrometry , 2006 .

[36]  C. Sotin,et al.  Ceres: Evolution and current state , 2005 .

[37]  Jeffrey R. Johnson,et al.  In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.

[38]  R. Clayton,et al.  Carbonaceous Chondrite Clasts in the Halite-bearing H5 Chondrite Zag , 2003 .

[39]  E. Anderson,et al.  Interferometer-controlled scanning transmission X-ray microscopes at the Advanced Light Source. , 2003, Journal of synchrotron radiation.

[40]  M. Zolensky,et al.  The halite‐bearing Zag and Monahans (1998) meteorite breccias: Shock metamorphism, thermal metamorphism and aqueous alteration on the H‐chondrite parent body , 2002 .

[41]  D. Vokrouhlický,et al.  Dynamical Spreading of Asteroid Families by the Yarkovsky Effect , 2001, Science.

[42]  L. Rothschild,et al.  Life in extreme environments , 2001, Nature.

[43]  J. Masarik,et al.  The Monahans chondrite and halite: Argon‐39/argon‐40 age, solar gases, cosmic‐ray exposure ages, and parent body regolith neutron flux and thickness , 2001 .

[44]  J. Bridges,et al.  Extinct 129I in Halite from a Primitive Meteorite: Evidence for Evaporite Formation in the Early Solar System , 2000 .

[45]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[46]  Jacobsen,et al.  Soft X‐ray spectroscopy from image sequences with sub‐100 nm spatial resolution , 2000, Journal of microscopy.

[47]  M. Zolensky,et al.  Asteroidal water within fluid inclusion-bearing halite in an H5 chondrite, Monahans (1998) , 1999, Science.

[48]  Michael J. Gaffey,et al.  Asteroid 6 Hebe: The probable parent body of the H‐type ordinary chondrites and the IIE iron meteorites , 1998 .

[49]  R. Zare,et al.  Indigenous Polycyclic Aromatic Hydrocarbons in Circumstellar Graphite Grains from Primitive Meteorites , 1998 .

[50]  C. Hennig,et al.  XANES investigation of chemical states of nitrogen in polyaniline , 1998 .

[51]  K. Keil,et al.  Clast sizes of ejecta from explosive eruptions on asteroids: implications for the fate of the basaltic products of differentiation , 1996 .

[52]  S. Pizzarello,et al.  Isotopic analyses of nitrogenous compounds from the Murchison meteorite: ammonia, amines, amino acids, and polar hydrocarbons. , 1994, Geochimica et cosmochimica acta.

[53]  R N Zare,et al.  Identification of Complex Aromatic Molecules in Individual Interplanetary Dust Particles , 1993, Science.

[54]  R. Zare,et al.  Analysis of Polycyclic Aromatic Hydrocarbons in Seventeen Ordinary and Carbonaceous Chondrites , 1992 .

[55]  K. Keil,et al.  Shock metamorphism of ordinary chondrites , 1991 .

[56]  S. Pizzarello,et al.  Unusual stable isotope ratios in amino acid and carboxylic acid extracts from the Murchison meteorite , 1987, Nature.

[57]  A. Mariotti Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements , 1983, Nature.

[58]  E. Anders,et al.  Origin of organic matter in early solar system—III. Amino acids: Catalytic synthesis , 1971 .

[59]  E. Roth,et al.  ABSOLUTE ISOTOPIC SCALE FOR DEUTERIUM ANALYSIS OF NATURAL WATERS. ABSOLUTE D/H RATIO FOR SMOW. , 1970 .

[60]  F. Tuinstra,et al.  Raman Spectrum of Graphite , 1970 .

[61]  H. Craig THE GEOCHEMISTRY OF THE STABLE CARBON ISOTOPES , 1953 .

[62]  E. E. Reid,et al.  THE DIRECT INTRODUCTION OF SULFUR INTO AROMATIC HYDROCARBONS1 , 1929 .

[63]  Bridges,et al.  Extinct (129)I in halite from a primitive meteorite: evidence for evaporite formation in the early solar system , 2000, Science.

[64]  R. Zare,et al.  Microprobe two-step laser mass spectrometry as an analytical tool for meteoritic samples. , 1997 .

[65]  E. Anders,et al.  Organic compounds in meteorites and their origins , 1981 .

[66]  Halite and stable chlorine isotopes in the Zag H3–6 breccia , 2022 .