Integrative Analysis of Omics Data

[1]  Jin Hou,et al.  Improved Production of a Heterologous Amylase in Saccharomyces cerevisiae by Inverse Metabolic Engineering , 2014, Applied and Environmental Microbiology.

[2]  Ronald Aylmer Sir Fisher,et al.  224A: Answer to Question 14 on Combining independent tests of significance. , 1948 .

[3]  R. Tibshirani,et al.  On testing the significance of sets of genes , 2006, math/0610667.

[4]  Intawat Nookaew,et al.  BioMet Toolbox: genome-wide analysis of metabolism , 2010, Nucleic Acids Res..

[5]  Israel Steinfeld,et al.  BMC Bioinformatics BioMed Central , 2008 .

[6]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[7]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[8]  M. Daly,et al.  PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes , 2003, Nature Genetics.

[9]  Per E. Andrén,et al.  Development and Evaluation of Normalization Methods for Label-free Relative Quantification of Endogenous Peptides* , 2009, Molecular & Cellular Proteomics.

[10]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[11]  Dong-Guk Shin,et al.  A route-based pathway analysis framework integrating mutation information and gene expression data. , 2017, Methods.

[12]  H. Kitano,et al.  Computational systems biology , 2002, Nature.

[13]  Nigel W. Hardy,et al.  Proposed minimum reporting standards for chemical analysis , 2007, Metabolomics.

[14]  Adam M. Feist,et al.  Reconstruction of biochemical networks in microorganisms , 2009, Nature Reviews Microbiology.

[15]  Intawat Nookaew,et al.  The RAVEN Toolbox and Its Use for Generating a Genome-scale Metabolic Model for Penicillium chrysogenum , 2013, PLoS Comput. Biol..

[16]  J. Stelling,et al.  Bridging the gaps in systems biology , 2014, Molecular Genetics and Genomics.

[17]  Yijia Zhang,et al.  Filtering Gene Ontology semantic similarity for identifying protein complexes in large protein interaction networks , 2012, Proteome Science.

[18]  Natapol Pornputtapong,et al.  Reconstruction of Genome-Scale Active Metabolic Networks for 69 Human Cell Types and 16 Cancer Types Using INIT , 2012, PLoS Comput. Biol..

[19]  Yiming Zuo,et al.  Protein network construction using reverse phase protein array data. , 2017, Methods.

[20]  Huiru Zheng,et al.  Integrated metagenomic analysis of the rumen microbiome of cattle reveals key biological mechanisms associated with methane traits. , 2017, Methods.

[21]  Xianjun Shen,et al.  Prioritizing disease-causing microbes based on random walking on the heterogeneous network. , 2017, Methods.

[22]  Mukesh Jain,et al.  NGS QC Toolkit: A Toolkit for Quality Control of Next Generation Sequencing Data , 2012, PloS one.

[23]  Robert Gentleman,et al.  Using GOstats to test gene lists for GO term association , 2007, Bioinform..

[24]  J. Koziol,et al.  Label-free, normalized quantification of complex mass spectrometry data for proteomics analysis , 2009, Nature Biotechnology.

[25]  D. Koller,et al.  From signatures to models: understanding cancer using microarrays , 2005, Nature Genetics.

[26]  Adam M. Feist,et al.  Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli , 2013, Molecular systems biology.

[27]  I. Nookaew,et al.  Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods , 2013, Nucleic acids research.

[28]  P. Campbell,et al.  Somatic mutation in cancer and normal cells , 2015, Science.

[29]  Thomas Lengauer,et al.  Improved scoring of functional groups from gene expression data by decorrelating GO graph structure , 2006, Bioinform..

[30]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[31]  J. Shendure,et al.  Exome sequencing as a tool for Mendelian disease gene discovery , 2011, Nature Reviews Genetics.

[32]  I. Eidhammer,et al.  Improving the reliability and throughput of mass spectrometry‐based proteomics by spectrum quality filtering , 2006, Proteomics.

[33]  Léon Personnaz,et al.  Enrichment or depletion of a GO category within a class of genes: which test? , 2007, Bioinform..

[34]  Jing Cao,et al.  GO-Bayes: Gene Ontology-based overrepresentation analysis using a Bayesian approach , 2010, Bioinform..

[35]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[36]  Markus J. Herrgård,et al.  Network-based prediction of human tissue-specific metabolism , 2008, Nature Biotechnology.

[37]  Benjamín J. Sánchez,et al.  Genome scale models of yeast: towards standardized evaluation and consistent omic integration. , 2015, Integrative biology : quantitative biosciences from nano to macro.

[38]  Stefano Di Carlo,et al.  In-silico cardiac aging regulatory model including microRNA post-transcriptional regulation. , 2017, Methods.

[39]  Holger Husi,et al.  Current advances in systems and integrative biology , 2014, Computational and structural biotechnology journal.

[40]  Nathan E Lewis,et al.  Analysis of omics data with genome-scale models of metabolism. , 2013, Molecular bioSystems.

[41]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[42]  Georgi Z. Genchev,et al.  Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction. , 2017, Methods.

[43]  Gabor T. Marth,et al.  An integrated map of structural variation in 2,504 human genomes , 2015, Nature.

[44]  Benno Schwikowski,et al.  Discovering regulatory and signalling circuits in molecular interaction networks , 2002, ISMB.

[45]  T. Ideker,et al.  Differential network biology , 2012, Molecular systems biology.

[46]  Avlant Nilsson,et al.  BioMet Toolbox 2.0: genome-wide analysis of metabolism and omics data , 2014, Nucleic Acids Res..

[47]  William Stafford Noble,et al.  Computational and Statistical Analysis of Protein Mass Spectrometry Data , 2012, PLoS Comput. Biol..

[48]  Peter Bühlmann,et al.  Analyzing gene expression data in terms of gene sets: methodological issues , 2007, Bioinform..

[49]  P. Pevzner,et al.  InsPecT: identification of posttranslationally modified peptides from tandem mass spectra. , 2005, Analytical chemistry.

[50]  Juan Miguel García-Gómez,et al.  BIOINFORMATICS APPLICATIONS NOTE Sequence analysis Manipulation of FASTQ data with Galaxy , 2005 .

[51]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[52]  G. Pessi,et al.  An integrated proteomics and transcriptomics reference data set provides new insights into the Bradyrhizobium japonicum bacteroid metabolism in soybean root nodules , 2010, Proteomics.

[53]  Margaret C. Linak,et al.  Sequence-specific error profile of Illumina sequencers , 2011, Nucleic acids research.

[54]  Jingshan Huang,et al.  Co-expression analysis among microRNAs, long non-coding RNAs, and messenger RNAs to understand the pathogenesis and progression of diabetic kidney disease at the genetic level. , 2017, Methods.

[55]  A. Heck,et al.  Next-generation proteomics: towards an integrative view of proteome dynamics , 2012, Nature Reviews Genetics.

[56]  Sandrine Dudoit,et al.  Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments , 2010, BMC Bioinformatics.

[57]  Antoine M. van Oijen,et al.  Real-time single-molecule observation of rolling-circle DNA replication , 2009, Nucleic acids research.

[58]  Jason A. Papin,et al.  Applications of genome-scale metabolic reconstructions , 2009, Molecular systems biology.

[59]  Christina Backes,et al.  GeneTrail—advanced gene set enrichment analysis , 2007, Nucleic Acids Res..

[60]  Frank Emmert-Streib,et al.  Gene set analysis approaches for RNA-seq data: performance evaluation and application guideline , 2015, Briefings Bioinform..

[61]  Marshall W. Bern,et al.  Automatic Quality Assessment of Peptide Tandem Mass Spectra , 2004, ISMB/ECCB.

[62]  Sangseon Lee,et al.  MIDAS: Mining differentially activated subpaths of KEGG pathways from multi-class RNA-seq data. , 2017, Methods.

[63]  D. Allison,et al.  Microarray data analysis: from disarray to consolidation and consensus , 2006, Nature Reviews Genetics.

[64]  Stephen J. Callister,et al.  Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. , 2006, Journal of proteome research.

[65]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[66]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Scott Ferson,et al.  Accounting for uncertainty in DNA sequencing data. , 2015, Trends in genetics : TIG.

[68]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[69]  Anders Albrechtsen,et al.  Greenlandic Inuit show genetic signatures of diet and climate adaptation , 2015, Science.

[70]  B. Chain,et al.  The sequence of sequencers: The history of sequencing DNA , 2016, Genomics.

[71]  Brad T. Sherman,et al.  DAVID-WS: a stateful web service to facilitate gene/protein list analysis , 2012, Bioinform..

[72]  Martin Kircher,et al.  Deep proteome and transcriptome mapping of a human cancer cell line , 2011, Molecular systems biology.

[73]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[74]  B Marshall,et al.  Gene Ontology Consortium: The Gene Ontology (GO) database and informatics resource , 2004, Nucleic Acids Res..

[75]  Katrin Deinhardt,et al.  Protein–protein interactions: switch from classical methods to proteomics and bioinformatics-based approaches , 2013, Cellular and Molecular Life Sciences.

[76]  Joshua M. Stuart,et al.  The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.

[77]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[78]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[79]  Philip Hugenholtz,et al.  Shining a Light on Dark Sequencing: Characterising Errors in Ion Torrent PGM Data , 2013, PLoS Comput. Biol..

[80]  R. Aebersold,et al.  Analysis, statistical validation and dissemination of large-scale proteomics datasets generated by tandem MS. , 2004, Drug discovery today.

[81]  B. Palsson,et al.  The model organism as a system: integrating 'omics' data sets , 2006, Nature Reviews Molecular Cell Biology.

[82]  Michael R. Speicher,et al.  A survey of tools for variant analysis of next-generation genome sequencing data , 2013, Briefings Bioinform..

[83]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[84]  Fang-Xiang Wu,et al.  An unsupervised machine learning method for assessing quality of tandem mass spectra , 2012, Proteome Science.

[85]  A. Brazma,et al.  Reuse of public genome-wide gene expression data , 2012, Nature Reviews Genetics.

[86]  J. Listgarten,et al.  Statistical and Computational Methods for Comparative Proteomic Profiling Using Liquid Chromatography-Tandem Mass Spectrometry , 2005, Molecular & Cellular Proteomics.

[87]  Vincent F. Melfi,et al.  Microarray analysis of gene expression: considerations in data mining and statistical treatment. , 2006, Physiological genomics.

[88]  Ji Hyun Kim,et al.  Understanding Metabolomics in Biomedical Research , 2016, Endocrinology and metabolism.

[89]  Jens Nielsen,et al.  Genome‐scale modeling of human metabolism – a systems biology approach , 2013, Biotechnology journal.

[90]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[91]  M. Metzker Sequencing technologies — the next generation , 2010, Nature Reviews Genetics.

[92]  J. Coon,et al.  Proteome sequencing goes deep. , 2015, Current opinion in chemical biology.

[93]  Juan Liu,et al.  Local network component analysis for quantifying transcription factor activities. , 2017, Methods.

[94]  Rainer Breitling,et al.  Iterative Group Analysis (iGA): A simple tool to enhance sensitivity and facilitate interpretation of microarray experiments , 2004, BMC Bioinformatics.

[95]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[96]  A. Sivachenko,et al.  Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples , 2013, Nature Biotechnology.

[97]  Aidong Zhang,et al.  Reconstructing context-specific gene regulatory network and identifying modules and network rewiring through data integration. , 2017, Methods.

[98]  Intawat Nookaew,et al.  Proteome- and transcriptome-driven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes. , 2015, Cell reports.

[99]  J. Ellenberg,et al.  The quantitative proteome of a human cell line , 2011, Molecular systems biology.

[100]  Jinwook Seo,et al.  miRTarVis+: Web-based interactive visual analytics tool for microRNA target predictions. , 2017, Methods.

[101]  P. McGettigan Transcriptomics in the RNA-seq era. , 2013, Current opinion in chemical biology.

[102]  H. Swerdlow,et al.  A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers , 2012, BMC Genomics.

[103]  M. Stephens,et al.  RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. , 2008, Genome research.

[104]  Jianxin Wang,et al.  A novel method of predicting microRNA-disease associations based on microRNA, disease, gene and environment factor networks. , 2017, Methods.

[105]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[106]  Jens Nielsen,et al.  Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks , 2008, BMC Systems Biology.

[107]  Wing Hung Wong,et al.  Statistical inferences for isoform expression in RNA-Seq , 2009, Bioinform..

[108]  Hanlee P. Ji,et al.  The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. , 2006, Nature biotechnology.

[109]  Martin Kuiper,et al.  BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks , 2005, Bioinform..

[110]  Edward J. O'Brien,et al.  Using Genome-scale Models to Predict Biological Capabilities , 2015, Cell.

[111]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[112]  A. Frigessi,et al.  Principles and methods of integrative genomic analyses in cancer , 2014, Nature Reviews Cancer.

[113]  Hyungwon Choi,et al.  QPROT: Statistical method for testing differential expression using protein-level intensity data in label-free quantitative proteomics. , 2015, Journal of proteomics.

[114]  Avi Ma'ayan,et al.  Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool , 2013, BMC Bioinformatics.

[115]  J. Nielsen,et al.  Uncovering transcriptional regulation of metabolism by using metabolic network topology. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[116]  Cole Trapnell,et al.  Computational methods for transcriptome annotation and quantification using RNA-seq , 2011, Nature Methods.

[117]  Brad T. Sherman,et al.  Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists , 2008, Nucleic acids research.

[118]  Michael Darsow,et al.  ChEBI: a database and ontology for chemical entities of biological interest , 2007, Nucleic Acids Res..

[119]  John R Yates,et al.  Proteomics by mass spectrometry: approaches, advances, and applications. , 2009, Annual review of biomedical engineering.

[120]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[121]  D. N. Perkins,et al.  Probability‐based protein identification by searching sequence databases using mass spectrometry data , 1999, Electrophoresis.

[122]  J. Yates,et al.  An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database , 1994, Journal of the American Society for Mass Spectrometry.

[123]  Mauricio O. Carneiro,et al.  The advantages of SMRT sequencing , 2013, Genome Biology.

[124]  E. Birney,et al.  Reactome: a knowledgebase of biological pathways , 2004, Nucleic Acids Research.

[125]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[126]  Andrew B. Nobel,et al.  Significance analysis of functional categories in gene expression studies: a structured permutation approach , 2005, Bioinform..