Two-Dimensional Materials for Thermal Management Applications

Summary With the advances of the electronics industry, the continuing trend of miniaturization and integration imposes challenges of efficient heat removal in nanoelectronic devices. Two-dimensional (2D) materials, especially graphene and hexagonal boron nitride (h-BN), are widely accepted as ideal candidates for thermal management materials due to their high intrinsic thermal conductivity and good mechanical flexibility. In this review, we introduce phonon dynamics of solid materials and thermal measurement methods at nanoscale, and highlight the unique thermal properties of 2D materials in relation to sample thickness, domain size, and interfaces. In addition, we discuss recent achievements of thermal management applications in which 2D materials act as heat spreader and thermal interface materials based on their controlled growth and self-assembly. Finally, critical consideration on the challenges and opportunities in thermal management applications of 2D materials is presented.

[1]  Peide D. Ye,et al.  Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus , 2015, Nature Communications.

[2]  Y. Huang,et al.  Thermal Conductivity of Polymer-Based Composites: Fundamentals and Applications , 2016 .

[3]  R. Sun,et al.  Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity , 2016, Scientific Reports.

[4]  Kai Liu,et al.  Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K , 2015, Nature Communications.

[5]  C. Koo,et al.  Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness , 2015 .

[6]  R. Sun,et al.  Polymer Composite with Improved Thermal Conductivity by Constructing a Hierarchically Ordered Three-Dimensional Interconnected Network of BN. , 2017, ACS applied materials & interfaces.

[7]  Gang Chen,et al.  Thermal conductance and phonon transmissivity of metal–graphite interfaces , 2010 .

[8]  M. Inagaki,et al.  Graphitization behavior of carbon film prepared from high modulus polyimide film: Synthesis of high-quality graphite film , 1994 .

[9]  Nicola Marzari,et al.  First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives , 2004, cond-mat/0412643.

[10]  T. Beechem,et al.  Manipulating thermal conductance at metal-graphene contacts via chemical functionalization. , 2012, Nano letters.

[11]  T. Mueller,et al.  Solar-energy conversion and light emission in an atomic monolayer p-n diode. , 2013, Nature Nanotechnology.

[12]  F. Xia,et al.  Graphene photodetectors for high-speed optical communications , 2010, 1009.4465.

[13]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[14]  사가 유지,et al.  Thermally conductive polymer compositions and articles made therefrom , 2010 .

[15]  Mark S. Lundstrom,et al.  Effects of surface band bending and scattering on thermoelectric transport in suspended bismuth telluride nanoplates. , 2013, Nano letters.

[16]  J. Lian,et al.  Highly thermally conductive and mechanically strong graphene fibers , 2015, Science.

[17]  M. Katsnelson,et al.  Adhesion and electronic structure of graphene on hexagonal boron nitride substrates: First-principles investigation within the random phase approximation , 2011, 1105.2379.

[18]  S. Thompson,et al.  Moore's law: the future of Si microelectronics , 2006 .

[19]  Xiao Hu,et al.  Thermal conductivity of polystyrene–aluminum nitride composite , 2002 .

[20]  J. Coleman,et al.  Oxygen radical functionalization of boron nitride nanosheets. , 2012, Journal of the American Chemical Society.

[21]  Jinlong Yang,et al.  Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources. , 2011, ACS nano.

[22]  A. Balandin,et al.  Two-dimensional phonon transport in graphene , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  E. Bekyarova,et al.  Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet – Carbon Nanotube Filler for Epoxy Composites , 2008 .

[24]  R. Ruoff,et al.  The chemistry of graphene oxide. , 2010, Chemical Society reviews.

[25]  Li Shi,et al.  Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene. , 2011, Nano letters.

[26]  Emmanuel Tylianakis,et al.  Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage. , 2008, Nano letters.

[27]  S. Stankovich,et al.  Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide , 2007 .

[28]  Yong-Wei Zhang,et al.  Topological Defects at the Graphene/h-BN interface Abnormally Enhance Its Thermal Conductance. , 2016, Nano letters.

[29]  D. Tománek,et al.  Effect of structural defects on the thermal conductivity of graphene: From point to line defects to haeckelites , 2014 .

[30]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[31]  P. Klemens,et al.  Thermal conductivity of graphite in the basal plane , 1994 .

[32]  C. N. Lau,et al.  PROOF COPY 020815APL Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits , 2008 .

[33]  Carl W. Magnuson,et al.  Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments. , 2011, ACS nano.

[34]  Guosong Hong,et al.  MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. , 2011, Journal of the American Chemical Society.

[35]  F. Schwierz Graphene transistors. , 2010, Nature nanotechnology.

[36]  Yan Liu,et al.  A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials. , 2011, ACS nano.

[37]  G. A. Slack,et al.  Anisotropic Thermal Conductivity of Pyrolytic Graphite , 1962 .

[38]  D. Yan,et al.  The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites , 2013 .

[39]  Chongwu Zhou,et al.  High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. , 2014, ACS nano.

[40]  Paul Zschack,et al.  Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals , 2007, Science.

[41]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[42]  X. Qin,et al.  A comparison of the effect of graphitization on microstructures and properties of polyacrylonitrile and mesophase pitch-based carbon fibers , 2012 .

[43]  Juekuan Yang,et al.  Electron contributions to the heat conduction across Au/graphene/Au interfaces , 2017 .

[44]  C. Ma,et al.  Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites , 2011 .

[45]  Yang Hong,et al.  Thermal transport across graphene and single layer hexagonal boron nitride , 2015 .

[46]  Alexander A. Balandin,et al.  Graphene Thermal Properties: Applications in Thermal Management and Energy Storage , 2014 .

[47]  V. Varshney,et al.  Modeling of thermal transport in pillared-graphene architectures. , 2010, ACS nano.

[48]  Satyaprakash Sahoo,et al.  Temperature-Dependent Raman Studies and Thermal Conductivity of Few-Layer MoS2 , 2013 .

[49]  E. Pop,et al.  Heat conduction across monolayer and few-layer graphenes. , 2010, Nano letters.

[50]  M. Itkis,et al.  Graphite Nanoplatelet−Epoxy Composite Thermal Interface Materials , 2007 .

[51]  Fosong Wang,et al.  Enhancing the Thermal Conductance of Polymer and Sapphire Interface via Self-Assembled Monolayer. , 2016, ACS nano.

[52]  D. Cahill Analysis of heat flow in layered structures for time-domain thermoreflectance , 2004 .

[53]  P. Ding,et al.  Anisotropic thermal conductive properties of hot-pressed polystyrene/graphene composites in the through-plane and in-plane directions , 2015 .

[54]  Hafez Raeisi Fard,et al.  Large‐Area Freestanding Graphene Paper for Superior Thermal Management , 2014, Advanced materials.

[55]  Eric Pop,et al.  Thermal Properties of Metal-Coated Vertically Aligned Single-Wall Nanotube Arrays , 2008 .

[56]  Yiyu Feng,et al.  Enhancement of cross-plane thermal conductivity and mechanical strength via vertical aligned carbon nanotube@graphite architecture , 2016 .

[57]  P. Li,et al.  Ultrahigh Thermal Conductive yet Superflexible Graphene Films , 2017, Advanced materials.

[58]  Bin Shen,et al.  Ultrathin Flexible Graphene Film: An Excellent Thermal Conducting Material with Efficient EMI Shielding , 2014 .

[59]  Yury Gogotsi,et al.  Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization , 2015, Nature Communications.

[60]  H. Lee,et al.  Functionalization of multi-walled carbon nanotubes with various 4-substituted benzoic acids in mild polyphosphoric acid/phosphorous pentoxide , 2008 .

[61]  Qing Hua Wang,et al.  Bi- and trilayer graphene solutions. , 2011, Nature nanotechnology.

[62]  J. Wilks,et al.  III. Second sound and the thermo-mechanical effect at very low temperatures , 1952 .

[63]  N. Mingo,et al.  Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit , 2010 .

[64]  C. Zhi,et al.  Large‐Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties , 2009 .

[65]  C. Dimitrakopoulos,et al.  100 GHz Transistors from Wafer Scale Epitaxial Graphene , 2010, 1002.3845.

[66]  B. Hong,et al.  Length-dependent thermal conductivity in suspended single-layer graphene. , 2014, Nature communications.

[67]  F. Tang,et al.  Thermal conductivity of composites with hybrid carbon nanotubes and graphene nanoplatelets , 2012 .

[68]  J. Coleman,et al.  High-yield production of graphene by liquid-phase exfoliation of graphite. , 2008, Nature nanotechnology.

[69]  Martha E. Grady,et al.  Effects of chemical bonding on heat transport across interfaces. , 2012, Nature materials.

[70]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[71]  Zheng Yan,et al.  A seamless three-dimensional carbon nanotube graphene hybrid material , 2012, Nature Communications.

[72]  Viktor Malyarchuk,et al.  Digital cameras with designs inspired by the arthropod eye , 2013, Nature.

[73]  C. Zhi,et al.  Toward Effective Synergetic Effects from Graphene Nanoplatelets and Carbon Nanotubes on Thermal Conductivity of Ultrahigh Volume Fraction Nanocarbon Epoxy Composites , 2012 .

[74]  Robert A. Guyer,et al.  SECOND SOUND IN SOLID HELIUM , 1966 .

[75]  Jiuning Hu,et al.  Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. , 2009, Nano letters.

[76]  P. Ajayan,et al.  High thermal conductivity of suspended few-layer hexagonal boron nitride sheets , 2014, Nano Research.

[77]  G. Shi,et al.  Base‐Induced Liquid Crystals of Graphene Oxide for Preparing Elastic Graphene Foams with Long‐Range Ordered Microstructures , 2016, Advanced materials.

[78]  Peng Xu,et al.  Ultrastiff and Strong Graphene Fibers via Full‐Scale Synergetic Defect Engineering , 2016, Advanced materials.

[79]  Jia Zhu,et al.  Thermal Properties of Two Dimensional Layered Materials , 2017 .

[80]  K. Novoselov,et al.  Thermal conductivity of graphene laminate. , 2014, Nano letters.

[81]  K. Hata,et al.  Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes , 2004, Science.

[82]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[83]  Alexander A. Balandin,et al.  Theoretical description of thermal transport in graphene: The issues of phonon cut‐off frequencies and polarization branches , 2011 .

[84]  C. Zhi,et al.  Polyhedral Oligosilsesquioxane‐Modified Boron Nitride Nanotube Based Epoxy Nanocomposites: An Ideal Dielectric Material with High Thermal Conductivity , 2013 .

[85]  P. G. Klemens,et al.  Theory of the A-Plane Thermal Conductivity of Graphite , 2000 .

[86]  O. Kwon,et al.  Quantitative measurement with scanning thermal microscope by preventing the distortion due to the heat transfer through the air. , 2011, ACS nano.

[87]  Li Shi,et al.  Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. , 2013, Nano letters.

[88]  Li Shi,et al.  Thermal transport in graphene , 2012 .

[89]  F. Kargar,et al.  Magnetically-Functionalized Self-Aligning Graphene Fillers for High-Efficiency Thermal Management Applications , 2015, 1508.07061.

[90]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[91]  A. Balandin,et al.  Strongly Anisotropic Thermal Conductivity of Free‐Standing Reduced Graphene Oxide Films Annealed at High Temperature , 2015 .

[92]  D. Cahill Thermal conductivity measurement from 30 to 750 K: the 3ω method , 1990 .

[93]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[94]  Seokwoo Jeon,et al.  Enhanced Thermal Conductivity of Epoxy–Graphene Composites by Using Non‐Oxidized Graphene Flakes with Non‐Covalent Functionalization , 2013, Advanced materials.

[95]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[96]  Hua Zhang,et al.  Graphene‐Based Composites , 2012 .

[97]  S. Hsu,et al.  Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride. , 2010, The journal of physical chemistry. B.

[98]  Qi Wang,et al.  Preparation of polymer/inorganic nanoparticles composites through ultrasonic irradiation , 2001 .

[99]  Hui‐Ming Cheng,et al.  Efficient preparation of large-area graphene oxide sheets for transparent conductive films. , 2010, ACS nano.

[100]  K. Novoselov,et al.  APPLIED PHYSICS 2 D materials and van der Waals heterostructures , 2016 .

[101]  J. Simpson,et al.  Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. , 2014, ACS nano.

[102]  N. Xu,et al.  Tailoring the thermal and electrical transport properties of graphene films by grain size engineering , 2017, Nature Communications.

[103]  Dazhi Jiang,et al.  3D Bridged Carbon Nanoring/Graphene Hybrid Paper as a High-Performance Lateral Heat Spreader. , 2015, Small.

[104]  Qiang Zhang,et al.  Hierarchical Graphene–Carbon Fiber Composite Paper as a Flexible Lateral Heat Spreader , 2014 .

[105]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[106]  Chao Gao,et al.  Highly Electrically Conductive Ag‐Doped Graphene Fibers as Stretchable Conductors , 2013, Advanced materials.

[107]  C. N. Lau,et al.  Thermal contact resistance between graphene and silicon dioxide , 2009 .

[108]  Gang Chen,et al.  Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance. , 2008, The Review of scientific instruments.

[109]  N. Marzari,et al.  The Electronic Thermal Conductivity of Graphene. , 2016, Nano letters.

[110]  Li Shi,et al.  Two-Dimensional Phonon Transport in Supported Graphene , 2010, Science.

[111]  Nicola Marzari,et al.  Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene. , 2012, Nano letters.

[112]  J. Coleman,et al.  Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions , 2008, 0809.2690.

[113]  Natalio Mingo,et al.  Phonon thermal transport in strained and unstrained graphene from first principles , 2014 .

[114]  M. Loeblein,et al.  High-Density 3D-Boron Nitride and 3D-Graphene for High-Performance Nano-Thermal Interface Material. , 2017, ACS nano.

[115]  D. Cahill,et al.  Thermal conductance of epitaxial interfaces , 2003 .

[116]  E. Pop Energy dissipation and transport in nanoscale devices , 2010, 1003.4058.

[117]  R. Ruoff,et al.  Continuous Carbon Nanotube-Ultrathin Graphite Hybrid Foams for Increased Thermal Conductivity and Suppressed Subcooling in Composite Phase Change Materials. , 2015, ACS nano.

[118]  A. Balandin,et al.  Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites. , 2013, ACS nano.

[119]  Tony F. Heinz,et al.  Ultraflat graphene , 2009, Nature.

[120]  K. Mak,et al.  Measurement of the thermal conductance of the graphene/SiO2 interface , 2010 .

[121]  Yunfei Chen,et al.  Wave packet simulations of phonon boundary scattering at graphene edges , 2012 .

[122]  D. Cahill,et al.  Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus , 2015, Advanced materials.

[123]  Li Shi,et al.  Basal-plane thermal conductivity of few-layer molybdenum disulfide , 2014 .

[124]  Shuhui Yu,et al.  Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties. , 2015, Nanoscale.

[125]  R. Ruoff,et al.  Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. , 2010, Nano letters.

[126]  B. Cao,et al.  Phonon thermal properties of graphene on h-BN from molecular dynamics simulations , 2017 .

[127]  Kenji Watanabe,et al.  Interlayer electron–phonon coupling in WSe2/hBN heterostructures , 2016, Nature Physics.

[128]  Hafez Raeisi Fard,et al.  High thermal conductivity epoxy-silver composites based on self-constructed nanostructured metallic networks , 2012 .

[129]  M. Dresselhaus,et al.  Spectral mapping of thermal conductivity through nanoscale ballistic transport. , 2015, Nature nanotechnology.

[130]  R. Nair,et al.  Thermal conductivity of graphene in corbino membrane geometry. , 2010, ACS nano.

[131]  Aydin Babakhani,et al.  In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. , 2013, Nature nanotechnology.

[132]  G. Eesley,et al.  Transient thermoreflectance from thin metal films , 1986, Annual Meeting Optical Society of America.

[133]  Mingyuan Ge,et al.  Black Arsenic-Phosphorus: Layered Anisotropic Infrared Semiconductors with Highly Tunable Compositions and Properties. , 2015, Advanced materials.

[134]  Alexander A. Balandin,et al.  Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering , 2009 .

[135]  Kehan Yu,et al.  Super-elastic graphene/carbon nanotube aerogel: A novel thermal interface material with highly thermal transport properties , 2016 .

[136]  Changhong Liu,et al.  Highly oriented carbon nanotube papers made of aligned carbon nanotubes , 2008, Nanotechnology.

[137]  Alexander A. Balandin,et al.  Thermal properties of graphene and few-layer graphene: applications in electronics , 2015, IET Circuits Devices Syst..

[138]  Alexander A Balandin,et al.  Anomalous size dependence of the thermal conductivity of graphene ribbons. , 2012, Nano letters.

[139]  Daining Fang,et al.  Mechanical and thermal transport properties of graphene with defects , 2011 .

[140]  W. Lu,et al.  Improved synthesis of graphene oxide. , 2010, ACS nano.

[141]  P. Ajayan,et al.  Effect of high-temperature thermal treatment on the structure and adsorption properties of reduced graphene oxide , 2013, Carbon.

[142]  P. Klemens Thermal Conductivity and Lattice Vibrational Modes , 1958 .

[143]  Gang Chen,et al.  Hydrodynamic phonon transport in suspended graphene , 2015, Nature Communications.

[144]  Yuanhua Lin,et al.  Interface effect on thermal conductivity of carbon nanotube composites , 2004 .

[145]  Sang Wook Lee,et al.  Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy , 2011, 1103.3337.

[146]  N. Peres,et al.  Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures , 2011, Science.

[147]  C. N. Lau,et al.  Temperature dependence of the Raman spectra of graphene and graphene multilayers. , 2007, Nano letters.

[148]  Huang Wu,et al.  Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties , 2012 .

[149]  Li Shi,et al.  Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite. , 2012, Nano letters.

[150]  Li Shi,et al.  Scanning thermal microscopy of carbon nanotubes using batch-fabricated probes , 2000 .

[151]  Qiang Zhang,et al.  Resilient aligned carbon nanotube/graphene sandwiches for robust mechanical energy storage , 2014 .

[152]  Junyong Kang,et al.  Thermal conductivity of isotopically modified graphene. , 2011, Nature Materials.

[153]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[154]  B. Gu,et al.  Intrinsic anisotropy of thermal conductance in graphene nanoribbons , 2009, 0910.3267.

[155]  Y. S. Touloukian Thermophysical properties of matter , 1970 .

[156]  L. Qu,et al.  All‐Graphene Core‐Sheath Microfibers for All‐Solid‐State, Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles , 2013, Advanced materials.

[157]  Dan Liu,et al.  Thermal transport in suspended and supported few-layer graphene. , 2011, Nano letters.

[158]  M. Yoon,et al.  Phonon transport at the interfaces of vertically stacked graphene and hexagonal boron nitride heterostructures. , 2016, Nanoscale.

[159]  Dan Li,et al.  Biomimetic superelastic graphene-based cellular monoliths , 2012, Nature Communications.

[160]  A. Balandin,et al.  Thermal Properties of the Hybrid Graphene-Metal Nano-Micro-Composites: Applications in Thermal Interface Materials , 2012, 1202.0330.

[161]  David P. Anderson,et al.  Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites , 2008 .

[162]  R. Sun,et al.  Ice-Templated Assembly Strategy to Construct 3D Boron Nitride Nanosheet Networks in Polymer Composites for Thermal Conductivity Improvement. , 2015, Small.

[163]  Guanxiong Liu,et al.  Graphene quilts for thermal management of high-power GaN transistors. , 2012, Nature communications.

[164]  Xingcun Colin Tong,et al.  Advanced Materials for Thermal Management of Electronic Packaging , 2011 .

[165]  Li Shi,et al.  Phonon-interface scattering in multilayer graphene on an amorphous support , 2013, Proceedings of the National Academy of Sciences.

[166]  Jooheon Kim,et al.  Flexible and high thermal conductivity thin films based on polymer: Aminated multi-walled carbon nanotubes/micro-aluminum nitride hybrid composites , 2012 .

[167]  K. Novoselov,et al.  Thermal properties of graphene-copper-graphene heterogeneous films. , 2014, Nano letters.

[168]  Y. Bando,et al.  Multifunctional Superelastic Foam-Like Boron Nitride Nanotubular Cellular-Network Architectures. , 2017, ACS nano.

[169]  Gaohua Zhu,et al.  Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation , 2016, Nature Communications.

[170]  Natalio Mingo,et al.  Flexural phonons and thermal transport in graphene , 2010 .

[171]  R. Sun,et al.  Highly Thermally Conductive Composite Papers Prepared Based on the Thought of Bioinspired Engineering. , 2016, ACS applied materials & interfaces.

[172]  Yongping Zheng,et al.  Graphene-nanotube 3D networks: intriguing thermal and mechanical properties , 2012 .

[173]  Dmitri Golberg,et al.  Boron nitride nanotubes and nanosheets. , 2010, ACS nano.

[174]  Mohammed Saadah,et al.  Thermal Management of Concentrated Multi-Junction Solar Cells with Graphene-Enhanced Thermal Interface Materials , 2017 .

[175]  Samia Subrina,et al.  Dimensional crossover of thermal transport in few-layer graphene. , 2010, Nature materials.

[176]  M. Hikita,et al.  Preparation and evaluation of epoxy composite insulating materials toward high thermal conductivity , 2010, 2010 10th IEEE International Conference on Solid Dielectrics.

[177]  Ming Hu,et al.  Interfacial thermal conductance between silicon and a vertical carbon nanotube , 2008 .

[178]  W. W. Lozier,et al.  Thermal diffusivity and thermal conductivity of pyrolytic graphite from 300 to 2700° K , 1973 .

[179]  J. Coleman,et al.  Liquid Exfoliation of Layered Materials , 2013, Science.

[180]  A. Balandin,et al.  Phonons and thermal transport in graphene and graphene-based materials , 2016, Reports on progress in physics. Physical Society.

[181]  J. Grossman,et al.  Thermal transport in functionalized graphene. , 2012, ACS nano.

[182]  Xufeng Zhou,et al.  Solvent evaporation induced self-assembly of graphene foam for thermally conductive polymers , 2017 .

[183]  R. Ruoff,et al.  Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage , 2014 .

[184]  A. A. Balandin,et al.  Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite , 2009, 0904.0607.

[185]  Ya‐Ping Sun,et al.  Polymer/boron nitride nanocomposite materials for superior thermal transport performance. , 2012, Angewandte Chemie.

[186]  Changhong Liu,et al.  Thermal boundary resistances of carbon nanotubes in contact with metals and polymers. , 2009, Nano letters.

[187]  Zhi Yang,et al.  Ultrahigh Conductive Graphene Paper Based on Ball‐Milling Exfoliated Graphene , 2017 .

[188]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[189]  Bernhard Wietek Fibers , 1963, Fiber Concrete.

[190]  O. Kwon,et al.  Measuring the thermal conductivity of residue-free suspended graphene bridge using null point scanning thermal microscopy , 2014 .

[191]  Zhigang Li,et al.  Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir-Blodgett assembly. , 2011, ACS nano.

[192]  Taylor S. Ashton,et al.  Foam-like hierarchical hexagonal boron nitride as a non-traditional thermal conductivity enhancer for polymer-based composite materials , 2017 .

[193]  Duckjong Kim,et al.  Ultrahigh Thermal Conductivity of Interface Materials by Silver‐Functionalized Carbon Nanotube Phonon Conduits , 2016, Advanced materials.

[194]  D. Go,et al.  Covalent bonding modulated graphene-metal interfacial thermal transport. , 2016, Nanoscale.

[195]  Liu Zhongliang,et al.  Effects of multi-walled carbon nanotubes addition on thermal properties of thermal grease , 2014 .

[196]  Chi Cheng,et al.  Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage , 2013, Science.

[197]  E. Cohen,et al.  Hotspot-Limited Microprocessors: Direct Temperature and Power Distribution Measurements , 2007, IEEE Journal of Solid-State Circuits.

[198]  Jae Ryoun Youn,et al.  Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites , 2005 .

[199]  D. Chi,et al.  Thermal Conductance of the 2D MoS2/h-BN and graphene/h-BN Interfaces , 2017, Scientific Reports.

[200]  K. Moon,et al.  Vertically Aligned and Interconnected Graphene Networks for High Thermal Conductivity of Epoxy Composites with Ultralow Loading , 2016 .

[201]  A. Balandin,et al.  Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. , 2012, Nano letters.

[202]  Siegfried Bauer,et al.  Flexible electronics: Sophisticated skin. , 2013, Nature materials.

[203]  Jean C. Huie,et al.  Thermal conductivity of an aligned carbon nanotube array , 2007 .

[204]  Yanlong Wang,et al.  Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy , 2015, Nano Research.

[205]  A. Balandin,et al.  Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries , 2013, 1305.4140.

[206]  Kenneth E. Goodson,et al.  Thermal conduction phenomena in carbon nanotubes and related nanostructured materials , 2013 .