Weak Poincar´e Inequalities for Convergence Rate of Degenerate Diffusion Processes ∗

For a contraction C 0 -semigroup on a separable Hilbert space, the decay rate is es-timated by using the weak Poincar´e inequalities for the symmetric and anti-symmetric part of the generator. As applications, non-exponential convergence rate is character-ized for a class of degenerate diffusion processes, so that the study of hypocoercivity is extended. Concrete examples are presented.

[1]  Shulan Hu,et al.  Subexponential decay in kinetic Fokker–Planck equation: Weak hypocoercivity , 2019, Bernoulli.

[2]  Feng-Yu Wang Hypercontractivity and applications for stochastic Hamiltonian systems , 2017 .

[3]  Martin Grothaus,et al.  Hypocoercivity for Kolmogorov backward evolution equations and applications , 2012, 1207.5447.

[4]  Axel Klar,et al.  Exponential Rate of Convergence to Equilibrium for a Model Describing Fiber Lay-Down Processes , 2012, 1201.2156.

[5]  Feng-Yu Wang,et al.  Derivative formula and applications for degenerate diffusion semigroups , 2011, 1107.0096.

[6]  R. Schilling,et al.  Functional inequalities and subordination: stability of Nash and Poincaré inequalities , 2011, 1105.3082.

[7]  A. Guillin,et al.  Degenerate Fokker–Planck equations: Bismut formula, gradient estimate and Harnack inequality , 2011, 1103.2817.

[8]  C. Mouhot,et al.  HYPOCOERCIVITY FOR LINEAR KINETIC EQUATIONS CONSERVING MASS , 2010, 1005.1495.

[9]  M. Grothaus,et al.  Construction, ergodicity and rate of convergence of N-particle Langevin dynamics with singular potentials , 2010 .

[10]  Renjun Duan,et al.  Hypocoercivity of linear degenerately dissipative kinetic equations , 2009, 0912.1733.

[11]  C. Mouhot,et al.  Hypocoercivity for kinetic equations with linear relaxation terms , 2008, 0810.3493.

[12]  M. Röckner,et al.  Markov processes associated with Lp-resolvents and applications to stochastic differential equations on Hilbert space , 2006 .

[13]  C. Villani,et al.  Hypocoercivity , 2006, math/0609050.

[14]  F. Nier,et al.  Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians , 2005 .

[15]  R. Feldman Construction , 2004, SP-110: Hyperbolic Paraboloid Shells.

[16]  A. Bendikov,et al.  Nash type inequalities for fractional powers of non-negative self-adjoint operators , 2004, math/0403174.

[17]  M. Röckner,et al.  Weak Poincaré Inequalities and L2-Convergence Rates of Markov Semigroups , 2001 .

[18]  Gerald Trutnau Stochastic calculus of generalized Dirichlet forms and applications to stochastic differential equations in infinite dimensions , 2000 .

[19]  J. Goldstein Semigroups of Linear Operators and Applications , 1985 .

[20]  N. Wielens The essential self-adjointness of generalized Schrödinger operators , 1985 .

[21]  M. Röckner L p -analysis of finite and infinite dimensional diffusion operators , 1999 .

[22]  Wilhelm Stannat,et al.  The theory of generalized Dirichlet forms and its applications in analysis and stochastics , 1999 .

[23]  N. Krylov Elliptic regularity and essential self-adjointness of Dirichlet operators on R , 1996 .