Multiresolution Approximations of Generalized Voronoi Diagrams

A framework to support multiresolution approximations of planar generalized Voronoi diagrams is presented. Our proposal is: (1) A multiresolution model based on a quadtree data structure which encodes approximations of a generalized Voronoi diagram at different levels of detail. (2) A user driven refinement strategy which generates from the quadtree a continuous polygonal approximation of the Voronoi diagram.

[1]  Larry S. Davis,et al.  Multiresolution path planning for mobile robots , 1986, IEEE J. Robotics Autom..

[2]  Imma Boada,et al.  Hierarchical planar voronoi diagram approximations , 2002, CCCG.

[3]  M. Overmars,et al.  Approximating generalized Voronoi diagrams in any dimension , 1995 .

[4]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[5]  Imma Boada,et al.  The Voronoi-Quadtree: construction and visualization , 2002, Eurographics.

[6]  Alexandru Telea,et al.  Visualization of Generalized Voronoi Diagrams , 2001, VisSym.

[7]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[8]  Sven Behnke,et al.  Local Multiresolution Path Planning , 2003, RoboCup.

[9]  James H. Davenport,et al.  Voronoi diagrams of set-theoretic solid models , 1992, IEEE Computer Graphics and Applications.

[10]  Imma Boada,et al.  Dynamically Maintaining a Hierarchical Planar Voronoi Diagram Approximation , 2003, ICCSA.

[11]  Mark H. Overmars,et al.  Approximating Voronoi Diagrams of Convex Sites in any Dimension , 1998, Int. J. Comput. Geom. Appl..

[12]  Hanan Samet,et al.  Applications of spatial data structures - computer graphics, image processing, and GIS , 1990 .

[13]  Marina L. Gavrilova,et al.  Computational Science and Its Applications — ICCSA 2003 , 2003 .

[14]  Marshall W. Bern,et al.  A new Voronoi-based surface reconstruction algorithm , 1998, SIGGRAPH.

[15]  J. Sack,et al.  Handbook of computational geometry , 2000 .

[16]  Harith Alani,et al.  Voronoi-based region approximation for geographical information retrieval with gazetteers , 2001, Int. J. Geogr. Inf. Sci..

[17]  Franz Aurenhammer,et al.  Voronoi Diagrams , 2000, Handbook of Computational Geometry.