Multiresolution Approximations of Generalized Voronoi Diagrams
暂无分享,去创建一个
[1] Larry S. Davis,et al. Multiresolution path planning for mobile robots , 1986, IEEE J. Robotics Autom..
[2] Imma Boada,et al. Hierarchical planar voronoi diagram approximations , 2002, CCCG.
[3] M. Overmars,et al. Approximating generalized Voronoi diagrams in any dimension , 1995 .
[4] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[5] Imma Boada,et al. The Voronoi-Quadtree: construction and visualization , 2002, Eurographics.
[6] Alexandru Telea,et al. Visualization of Generalized Voronoi Diagrams , 2001, VisSym.
[7] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[8] Sven Behnke,et al. Local Multiresolution Path Planning , 2003, RoboCup.
[9] James H. Davenport,et al. Voronoi diagrams of set-theoretic solid models , 1992, IEEE Computer Graphics and Applications.
[10] Imma Boada,et al. Dynamically Maintaining a Hierarchical Planar Voronoi Diagram Approximation , 2003, ICCSA.
[11] Mark H. Overmars,et al. Approximating Voronoi Diagrams of Convex Sites in any Dimension , 1998, Int. J. Comput. Geom. Appl..
[12] Hanan Samet,et al. Applications of spatial data structures - computer graphics, image processing, and GIS , 1990 .
[13] Marina L. Gavrilova,et al. Computational Science and Its Applications — ICCSA 2003 , 2003 .
[14] Marshall W. Bern,et al. A new Voronoi-based surface reconstruction algorithm , 1998, SIGGRAPH.
[15] J. Sack,et al. Handbook of computational geometry , 2000 .
[16] Harith Alani,et al. Voronoi-based region approximation for geographical information retrieval with gazetteers , 2001, Int. J. Geogr. Inf. Sci..
[17] Franz Aurenhammer,et al. Voronoi Diagrams , 2000, Handbook of Computational Geometry.