Evaluación experimental del caminado en tiempo real de un robot bípedo de 5 g.d.l. con marcha basada en movimientos cicloidales

The results of experimental tests of walking of the 5 degrees of freedom (dof) biped robot developed at the Instituto Tecnologico de la Laguna (ITLag) are presented in this paper. The gait pattern that is applied in this robot is based on cycloidal motion-type laws, which allow to advance by steps without impacts. Experiments showed an adequate mechanical behavior of the robot and effective performance of the control law applied to keep the ZMP (Zero Moment Point) inside of the support polygon of the robot's feet during walking. The specified parameters for gait pattern ensured a stable walking of the robot, without saturating the torque applied by the actuators.

[1]  S. Kajita,et al.  Experimental study of biped dynamic walking , 1996 .

[2]  Wang Junzheng,et al.  Design and simulation of a hydraulic biped robot , 2013, Proceedings of the 32nd Chinese Control Conference.

[3]  Atsuo Kawamura,et al.  Simulation of an autonomous biped walking robot including environmental force interaction , 1998, IEEE Robotics Autom. Mag..

[4]  Toshikazu Kawasaki,et al.  Design of prototype humanoid robotics platform for HRP , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  Friedrich Pfeiffer,et al.  Sensors and control concept of a biped robot , 2004, IEEE Transactions on Industrial Electronics.

[6]  Akihito Sano,et al.  Realization of natural dynamic walking using the angular momentum information , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[7]  Keiichiro Hoashi,et al.  Humanoid Robots in Waseda University—Hadaly-2 and WABIAN , 2002, Auton. Robots.

[8]  Sukhan Lee,et al.  Energy-Efficient SVM Learning Control System for Biped Walking Robots , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[9]  T. Takenaka,et al.  The development of Honda humanoid robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[10]  Jessy W. Grizzle,et al.  Experimental Validation of a Framework for the Design of Controllers that Induce Stable Walking in Planar Bipeds , 2004, Int. J. Robotics Res..

[11]  Akihito Sano,et al.  Sensor-Based Control of a Nine-Link Biped , 1990, Int. J. Robotics Res..

[12]  M. Vukobratovic,et al.  Contribution to the Synthesis of Biped Gait , 1968 .

[13]  Marc Raibert Dynamic legged robots for rough terrain , 2010, 2010 10th IEEE-RAS International Conference on Humanoid Robots.

[14]  Shuuji Kajita,et al.  Dynamic walking control of a biped robot along a potential energy conserving orbit , 1992, IEEE Trans. Robotics Autom..

[15]  Atsuo Takanishi,et al.  Development of a bipedal humanoid robot-control method of whole body cooperative dynamic biped walking , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[16]  Kazuhito Yokoi,et al.  The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[17]  Jessy W. Grizzle,et al.  Inducing dynamically stable walking in an underactuated prototype planar biped , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[18]  Kazuhito Yokoi,et al.  A realtime pattern generator for biped walking , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[19]  Kazuhisa Mitobe,et al.  Nonlinear feedback control of a biped walking robot , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[20]  Jong H. Park,et al.  Biped robot walking using gravity-compensated inverted pendulum mode and computed torque control , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[21]  Paolo Dario,et al.  Remote Interaction between Human and Humanoid Robot , 1999, J. Intell. Robotic Syst..

[22]  Ricardo Campa,et al.  Modeling and real-time motion control of a 4-dof planar parallelogram-link biped mechanism , 2009, 2009 European Control Conference (ECC).

[23]  Bernard Espiau,et al.  Bifurcation and chaos in a simple passive bipedal gait , 1997, Proceedings of International Conference on Robotics and Automation.

[24]  Martin Velasco-Villa,et al.  Análisis del deslizamiento en el punto de apoyo de un robot bípedo de 5-gdl , 2013 .

[25]  Atsuo Takanishi,et al.  Control to realize human-like walking of a biped humanoid robot , 2000, Smc 2000 conference proceedings. 2000 ieee international conference on systems, man and cybernetics. 'cybernetics evolving to systems, humans, organizations, and their complex interactions' (cat. no.0.

[26]  Christine Chevallereau,et al.  RABBIT: a testbed for advanced control theory , 2003 .