Accelerating MCMC by Rare Intermittent Resets

[1]  S. Majumdar,et al.  Stochastic resetting and applications , 2019, Journal of Physics A: Mathematical and Theoretical.

[2]  Douglas D. Heckathorn,et al.  Respondent-driven sampling : A new approach to the study of hidden populations , 1997 .

[3]  Carl D. Meyer,et al.  Deeper Inside PageRank , 2004, Internet Math..

[4]  Christian P. Robert,et al.  Accelerating MCMC algorithms , 2018, Wiley interdisciplinary reviews. Computational statistics.

[5]  Stephen M. Krone,et al.  Small-world MCMC and convergence to multi-modal distributions: From slow mixing to fast mixing , 2007 .

[6]  John N. Tsitsiklis,et al.  Markov Chains with Rare Transitions and Simulated Annealing , 1989, Math. Oper. Res..

[7]  A. Federgruen,et al.  Simulated annealing methods with general acceptance probabilities , 1987, Journal of Applied Probability.

[8]  Alain Sarlette,et al.  Characterizing limits and opportunities in speeding up Markov chain mixing , 2021, Stochastic Processes and their Applications.

[9]  Pierre Collet,et al.  Quasi-stationary distributions , 2011 .

[10]  Donald F. Towsley,et al.  Estimating and sampling graphs with multidimensional random walks , 2010, IMC '10.

[11]  Colin Cooper,et al.  Fast Low-Cost Estimation of Network Properties Using Random Walks , 2016, Internet Math..

[12]  Ravi Montenegro,et al.  Mathematical Aspects of Mixing Times in Markov Chains , 2006, Found. Trends Theor. Comput. Sci..

[13]  Bruce E. Hajek,et al.  Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..

[14]  Donald F. Towsley,et al.  Improving Random Walk Estimation Accuracy with Uniform Restarts , 2010, WAW.

[15]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.