Preserving nonnegativity of an affine finite element approximation for a convection-diffusion-reaction problem

An affine finite element scheme approximation of a time dependent linear convection-diffusion-reaction problem in 2D and 3D is presented. For these equations which do not satisfy an underlying maximum principle, sufficient conditions are given in terms of the coefficient functions, the computational grid and the discretization parameters to ensure that the nonnegativity property of the true solution is also satisfied by its approximation. Numerical examples are given which confirm the necessity and sufficiency of the discretization conditions to guarantee the nonnegativity of the approximation. We present a monotone FEM scheme for a convection-diffusion-reaction problem in 2, 3D.The considered equation does not possess an underlying maximum principle.Sufficient conditions are given to ensure the nonnegativity of the approximations.Numerical examples confirm the necessity and sufficiency of the conditions.

[1]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[2]  Xiaoliang Cheng,et al.  A linearly semi-implicit compact scheme for the Burgers–Huxley equation , 2011, Int. J. Comput. Math..

[3]  Walter Oevel,et al.  Topics in Soliton Theory and Exactly Solvable Non-Linear Equations , 1987 .

[4]  Vidar Thomée,et al.  On Positivity and Maximum-Norm Contractivity in Time Stepping Methods for Parabolic Equations , 2010, Comput. Methods Appl. Math..

[5]  V. Thomée Galerkin Finite Element Methods for Parabolic Problems (Springer Series in Computational Mathematics) , 2010 .

[6]  Róbert Horváth,et al.  Discrete maximum principles for FE solutions of nonstationary diffusion‐reaction problems with mixed boundary conditions , 2011 .

[7]  Jianxian Qiu,et al.  Maximum principle in linear finite element approximations of anisotropic diffusion–convection–reaction problems , 2012, Numerische Mathematik.

[8]  Rolf Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem, part II: Stability of solutions and error estimates uniform in time , 1986 .

[9]  Ludmil T. Zikatanov,et al.  A monotone finite element scheme for convection-diffusion equations , 1999, Math. Comput..

[10]  T. Fujimoto,et al.  TWO CHARACTERIZATIONS OF INVERSE-POSITIVE MATRICES: THE HAWKINS-SIMON CONDITION AND THE LE CHATELIER-BRAUN PRINCIPLE ∗ , 2004 .

[11]  Sergey Korotov,et al.  Discrete maximum principles for the FEM solution of some nonlinear parabolic problems , 2008 .

[12]  Yifan Zhang,et al.  Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection-diffusion equations on triangular meshes , 2013, J. Comput. Phys..

[13]  Mark J. Ablowitz,et al.  Topics in soliton theory and exactly solvable nonlinear equations : proceedings of the Conference on Nonlinear Evolution Equations, Solitons and the Inverse Scattering Transform, Oberwolfach, Germany, July 27-August 2, 1986 , 1987 .

[14]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[15]  Jorge Eduardo Macías-Díaz,et al.  A positive and bounded finite element approximation of the generalized Burgers–Huxley equation , 2015 .

[16]  Jay Gopalakrishnan,et al.  Nonnegativity of exact and numerical solutions of some chemotactic models , 2013, Comput. Math. Appl..

[17]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[18]  Róbert Horváth,et al.  Discrete Maximum Principle and Adequate Discretizations of Linear Parabolic Problems , 2006, SIAM J. Sci. Comput..

[19]  Mark S. Gockenbach,et al.  Understanding and implementing the finite element method , 1987 .

[20]  G. Burton Sobolev Spaces , 2013 .

[21]  Xijun Deng,et al.  Travelling wave solutions for the generalized Burgers-Huxley equation , 2008, Appl. Math. Comput..

[22]  X. Y. Wang,et al.  Solitary wave solutions of the generalised Burgers-Huxley equation , 1990 .

[23]  Sergey Korotov,et al.  Discrete maximum principles for nonlinear parabolic PDE systems , 2012 .

[24]  J. E. Macías-Díaz,et al.  The numerical solution of a generalized Burgers-Huxley equation through a conditionally bounded and symmetry-preserving method , 2011, Comput. Math. Appl..