Anisotropic polarization-induced conductance at a ferroelectric–insulator interface

[1]  Dragan Damjanovic,et al.  Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects. , 2017, Nature materials.

[2]  E. Artacho,et al.  Two-dimensional electron gas at the PbTi O3/SrTi O3 interface: An ab initio study , 2015, 1506.04865.

[3]  P. Littlewood,et al.  Model of two-dimensional electron gas formation at ferroelectric interfaces , 2015, 1503.07039.

[4]  A. Demkov,et al.  Switchable conductivity at the ferroelectric interface: Nonpolar oxides , 2015 .

[5]  Wei Zhang,et al.  Creation of high mobility two-dimensional electron gases via strain induced polarization at an otherwise nonpolar complex oxide interface. , 2015, Nano letters.

[6]  C. Ahn,et al.  Conduction at a ferroelectric interface , 2014 .

[7]  J. Levy,et al.  Nanoscale Phenomena in Oxide Heterostructures , 2014, 1401.1772.

[8]  G. M. De Luca,et al.  Origin of interface magnetism in BiMnO3/SrTiO3 and LaAlO3/SrTiO3 heterostructures. , 2013, Physical review letters.

[9]  E. Tsymbal,et al.  Ferroelectric instability under screened Coulomb interactions. , 2012, Physical review letters.

[10]  H. Tan,et al.  Oxidation state and chemical shift investigation in transition metal oxides by EELS , 2012 .

[11]  E. Tsymbal,et al.  Intrinsic defects in multiferroic BiFeO 3 and their effect on magnetism , 2012 .

[12]  H. Hwang,et al.  BASIC NOTIONS , 2022 .

[13]  Enge Wang,et al.  Domain Dynamics During Ferroelectric Switching , 2011, Science.

[14]  H. Hwang,et al.  Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface , 2011, 1108.3150.

[15]  Junling Wang,et al.  First-principles prediction of a two dimensional electron gas at the BiFeO3/SrTiO3 interface , 2011 .

[16]  C. M. Folkman,et al.  Effect of domain structure on dielectric nonlinearity in epitaxial BiFeO3 films , 2010 .

[17]  E. Tsymbal,et al.  Prediction of a switchable two-dimensional electron gas at ferroelectric oxide interfaces. , 2009, Physical review letters.

[18]  Long-Qing Chen,et al.  Phase-field method of phase transitions/domain structures in ferroelectric thin films: A review , 2008 .

[19]  C. Hellberg,et al.  Supplemental Information for Nanoscale Control of an Interfacial Metal-Insulator Transition at Room Temperature , 2008 .

[20]  M. Wuttig,et al.  Enhanced dielectric properties in single crystal-like BiFeO 3 thin films grown by flux-mediated epitaxy , 2008 .

[21]  N. Reyren,et al.  Superconducting Interfaces Between Insulating Oxides , 2007, Science.

[22]  W. G. van der Wiel,et al.  Magnetic effects at the interface between non-magnetic oxides. , 2007, Nature materials.

[23]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[24]  Shenyang Y. Hu,et al.  Effect of electrical boundary conditions on ferroelectric domain structures in thin films , 2002 .

[25]  Shenyang Y. Hu,et al.  Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films , 2002 .

[26]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[27]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[28]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.