The shape space of discrete orthogonal geodesic nets

Discrete orthogonal geodesic nets (DOGs) are a quad mesh analogue of developable surfaces. In this work we study continuous deformations on these discrete objects. Our main theoretical contribution is the characterization of the shape space of DOGs for a given net connectivity. We show that generally, this space is locally a manifold of a fixed dimension, apart from a set of singularities, implying that DOGs are continuously deformable. Smooth flows can be constructed by a smooth choice of vectors on the manifold's tangent spaces, selected to minimize a desired objective function under a given metric. We show how to compute such vectors by solving a linear system, and we use our findings to devise a geometrically meaningful way to handle singular points. We base our shape space metric on a novel DOG Laplacian operator, which is proved to converge under sampling of an analytical orthogonal geodesic net. We further show how to extend the shape space of DOGs by supporting creases and curved folds and apply the developed tools in an editing system for developable surfaces that supports arbitrary bending, stretching, cutting, (curved) folds, as well as smoothing and subdivision operations.

[1]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[2]  Leah Blau,et al.  Computational Line Geometry , 2016 .

[3]  Anthony J. Yezzi,et al.  Sobolev Active Contours , 2005, International Journal of Computer Vision.

[4]  Eitan Grinspun,et al.  Discrete Shells Origami , 2006, CATA.

[5]  Tomohiro Tachi,et al.  Simulation of Rigid Origami , 2006 .

[6]  E. Grinspun,et al.  Discrete laplace operators: no free lunch , 2007 .

[7]  Martin Kilian,et al.  String actuated curved folded surfaces , 2017, TOGS.

[8]  Jan Fostier,et al.  Needles: Toward Large-Scale Genomic Prediction with Marker-by-Environment Interaction , 2016, Genetics.

[9]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[10]  Eitan Grinspun,et al.  Discrete laplace operators: no free lunch , 2007, Symposium on Geometry Processing.

[11]  Erik D. Demaine,et al.  Geometric folding algorithms - linkages, origami, polyhedra , 2007 .

[12]  Olaf Schenk,et al.  Enhancing the scalability of selected inversion factorization algorithms in genomic prediction , 2017, J. Comput. Sci..

[13]  Marc Alexa,et al.  Discrete Laplacians on general polygonal meshes , 2011, ACM Trans. Graph..

[14]  Takeo Igarashi,et al.  Interactive Design of Planar Curved Folding by Reflection , 2011, PG.

[15]  Alain Bernard,et al.  5-axis flank milling: A state-of-the-art review , 2013, Comput. Aided Des..

[16]  Helmut Pottmann,et al.  Shape space exploration of constrained meshes , 2011, ACM Trans. Graph..

[17]  M. Kilian,et al.  Geometric modeling in shape space , 2007, SIGGRAPH 2007.

[18]  Michael M. Kazhdan,et al.  Can Mean‐Curvature Flow be Modified to be Non‐singular? , 2012, Comput. Graph. Forum.

[19]  Peter Schröder,et al.  Discrete Willmore flow , 2005, SIGGRAPH Courses.

[20]  Martin Rumpf,et al.  Exploring the Geometry of the Space of Shells , 2014, Comput. Graph. Forum.

[21]  Keenan Crane,et al.  Developability of triangle meshes , 2018, ACM Trans. Graph..

[22]  Olaf Schenk,et al.  Toward the Next Generation of Multiperiod Optimal Power Flow Solvers , 2018, IEEE Transactions on Power Systems.

[23]  Timothy A. Davis,et al.  Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR factorization , 2011, TOMS.

[24]  Martin Rumpf,et al.  Splines in the Space of Shells , 2016, Comput. Graph. Forum.

[25]  Erik D. Demaine,et al.  Curved Crease Folding – a Review on Art, Design and Mathematics , 2011 .

[26]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[27]  William Caspar Graustein On the Geodesics and Geodesic Circles on a Developable Surface , 1917 .

[28]  Keenan Crane,et al.  Robust fairing via conformal curvature flow , 2013, ACM Trans. Graph..

[29]  Mario Botsch,et al.  Example‐Driven Deformations Based on Discrete Shells , 2011, Comput. Graph. Forum.

[30]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[31]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[32]  Mark Pauly,et al.  Projective dynamics , 2014, ACM Trans. Graph..

[33]  Martin Kilian,et al.  Curved folding , 2008, ACM Trans. Graph..

[34]  David A. Huffman,et al.  Curvature and Creases: A Primer on Paper , 1976, IEEE Transactions on Computers.

[35]  Mark Pauly,et al.  Shape‐Up: Shaping Discrete Geometry with Projections , 2012, Comput. Graph. Forum.

[36]  Olga Sorkine-Hornung,et al.  Discrete Geodesic Nets for Modeling Developable Surfaces , 2017, ACM Trans. Graph..

[37]  Johannes Wallner,et al.  Interactive Design of Developable Surfaces , 2016, ACM Trans. Graph..

[38]  Stephen J. Wright,et al.  Sequential Quadratic Programming , 1999 .

[39]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[40]  A. Bobenko,et al.  Discrete Differential Geometry: Integrable Structure , 2008 .

[41]  Eitan Grinspun,et al.  Flexible Developable Surfaces , 2012, Comput. Graph. Forum.

[42]  James F. O'Brien,et al.  Folding and crumpling adaptive sheets , 2013, ACM Trans. Graph..

[43]  Peisheng Gao,et al.  2-D shape blending: an intrinsic solution to the vertex path problem , 1993, SIGGRAPH.

[44]  Bailin Deng,et al.  Anderson acceleration for geometry optimization and physics simulation , 2018, ACM Trans. Graph..

[45]  Serge Tabachnikov,et al.  MORE ON PAPERFOLDING , 1999 .

[46]  Erik D. Demaine,et al.  (Non)Existence of Pleated Folds: How Paper Folds Between Creases , 2009, Graphs Comb..

[47]  Johannes Wallner,et al.  Geometric Modeling with Conical Meshes and Developable Surfaces , 2006, ACM Trans. Graph..

[48]  Tim Hoffmann,et al.  Discrete differential geometry of curves and surfaces , 2009 .

[49]  Jean-Philippe Pons,et al.  Generalized Surface Flows for Mesh Processing , 2007 .

[50]  M. Wardetzky Discrete Differential Operators on Polyhedral Surfaces - Convergence and Approximation , 2007 .