A detailed geologic characterization of Eberswalde crater, Mars

Background: Eberswalde crater, selected as one of four finalist landing sites for the Mars Science Laboratory mission, is best known for the spectacularly preserved, inverted, fan-shaped deposit along its western margin. This feature has been interpreted as a lacustrine delta, although the timing and duration of an Eberswalde crater lake is poorly understood. The aim of this study is to place more broadly observed fluvio-lacustrine activity throughout the crater's floor within the larger context of Eberswalde’s geologic history, and to infer the sequence of deposition and erosion of the observed stratigraphic and geomorphic units. Method: We have identified and mapped stratigraphic and geomorphic units within all of Eberswalde crater using orbital imagery from the HiRISE, MOC and CTX cameras, and we have calculated crater statistics to infer the relative ages of crater floor materials. Using topographic datasets derived from HiRISE, CTX and MOLA, we determine the unit associations, successions, and geometries and develop a model for the depositional and erosional history within the crater. Conclusion: We have produced maps of ten stratigraphic and seven geomorphic units identified within Eberswalde crater. Our observations of the stratigraphy, geomorphology, topography and crater densities imply a complex relationship between deposition and exhumation within Eberswalde crater, and we infer the following sequence of major events: (1) Eberswalde crater forms in the Noachian (> 3.6 Ga); (2) Holden crater forms southwest of Eberswalde crater in the late Noachian to Early Hesperian, and its associated ejecta blanket covers the floor of Eberswalde crater and heavily modifies the southern rim; (3) Extensive faulting from regional stresses creates the first-order topography within the crater, and vein-like features form in some units from fracturing, fluid circulation, and cementation; (4) Valley features are carved in the crater walls as water flows into the crater, creating an Eberswalde lake in which delta formation occurs. The distribution of features interpreted as inverted channels and lacustrine deposits implies that the lake extended into the easternmost portion of the crater and at least six fluvio-deltaic systems formed; (5) Extensive exhumation and degredation of the crater floor materials occurs, perhaps simultaneously with the deposition of an airfall mantling unit; (6) Very little besides aeolian sediment transport activity occurs

[1]  A. McEwen,et al.  Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: Meter‐scale slopes of candidate Phoenix landing sites , 2008 .

[2]  S. Sutton,et al.  The nature of Martian fluids based on mobile element studies in salt‐assemblages from Martian meteorites , 2008 .

[3]  M. Bourke,et al.  Dynamic river channels suggest a long‐lived Noachian crater lake on Mars , 2005 .

[4]  G. Neukum,et al.  Surface Dating: Software Tool for Analysing Crater Size-Frequency Distributions Including Those Showing Partial Resurfacing Events , 2008 .

[5]  S. Ruff,et al.  Bright and dark regions on Mars: Particle size and mineralogical characteristics based on thermal emission spectrometer data , 2002 .

[6]  A. McEwen,et al.  Aeolian bedforms, yardangs, and indurated surfaces in the Tharsis Montes as seen by the HiRISE Camera: Evidence for dust aggregates , 2010 .

[7]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[8]  J. Head,et al.  Lineated valley fill (LVF) and lobate debris aprons (LDA) in the Deuteronilus Mensae northern dichotomy boundary region, Mars: Constraints on the extent, age and episodicity of Amazonian glacial events , 2009 .

[9]  L. Edwards,et al.  Context Camera Investigation on board the Mars Reconnaissance Orbiter , 2007 .

[10]  M. Manga,et al.  Floods on Mars released from groundwater by impact , 2005 .

[11]  Maria T. Zuber,et al.  A minimum time for the formation of Holden Northeast fan, Mars , 2004 .

[12]  David E. Smith,et al.  Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .

[13]  J. Grant,et al.  Late alluvial fan formation in southern Margaritifer Terra, Mars , 2011 .

[14]  A. Ivanov,et al.  Geological, geomorphological, facies and allostratigraphic maps of the Eberswalde fan delta , 2011 .

[15]  James B. Abshire,et al.  Mars Observer laser altimeter investigation , 1993, Defense, Security, and Sensing.

[16]  M. Malin,et al.  Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission , 2001 .

[17]  J. Zimbelman,et al.  Aspects of alluvial fan shape indicative of formation process: A case study in southwestern California with application to Mojave Crater fans on Mars , 2006 .

[18]  Jeffrey R. Johnson,et al.  Wind-driven particle mobility on Mars: Insights from Mars Exploration Rover observations at "El Dorado" and surroundings at Gusev Crater , 2008 .

[19]  M. Malin,et al.  Impact‐induced overland fluid flow and channelized erosion at Lyot Crater, Mars , 2010 .

[20]  Nicolas Thomas,et al.  Color imaging of Mars by the High Resolution Imaging Science Experiment (HiRISE) , 2010 .

[21]  W. Dietrich,et al.  Localized precipitation and runoff on Mars , 2010, 1012.5077.

[22]  J. Bandfield,et al.  Mineralogical characterization of Mars Science Laboratory candidate landing sites from THEMIS and TES data , 2009 .

[23]  Rossman P. Irwin TIMING, DURATION, AND HYDROLOGY OF THE EBERSWALDE CRATER PALEOLAKE, MARS. , 2011 .

[24]  G. Ori,et al.  Evidence for late Hesperian lacustrine activity in Shalbatana Vallis, Mars , 2007 .

[25]  James B. Garvin,et al.  Geometric properties of Martian impact craters: Preliminary results from the Mars Orbiter Laser Altimeter , 1998 .

[26]  James F. Bell,et al.  Geologic mapping and characterization of Gale Crater and implications for its potential as a Mars Science Laboratory landing site , 2009 .

[27]  Lesli J. Wood,et al.  Quantitative geomorphology of the Mars Eberswalde delta , 2006 .

[28]  Eugene M. Shoemaker,et al.  STRATIGRAPHIC BASIS FOR A LUNAR TIME SCALE , 1962 .

[29]  S. Squyres,et al.  Geomorphic Evidence for the Distribution of Ground Ice on Mars , 1986, Science.

[30]  M. Zuber Mars Orbiter Laser Altimeter , 1997 .

[31]  D. H. Scott,et al.  GEOLOGIC MAP OF THE WESTERN EQUATORIAL REGION OF MARS , 1986 .

[32]  K. Gwinner,et al.  Evolution and depositional environments of the Eberswalde fan delta, Mars , 2008 .

[33]  A. McEwen,et al.  Fracture-Controlled Paleo-Fluid Flow in Candor Chasma, Mars , 2007, Science.

[34]  A. McEwen,et al.  A Closer Look at Water-Related Geologic Activity on Mars , 2007, Science.

[35]  G. Neukum,et al.  Planetary surface dating from crater size-frequency distribution measurements: Partial resurfacing events and statistical age uncertainty , 2010 .

[36]  C. Pain,et al.  Inversion of relief on Mars , 2007 .

[37]  Steven W. Squyres,et al.  Martian fretted terrain: Flow of erosional debris , 1978 .

[38]  S. Clifford,et al.  Concentric crater fill on Mars; an aeolian alternative to ice-rich mass wasting , 1989 .

[39]  Jeffrey R. Johnson,et al.  Veneers, rinds, and fracture fills: Relatively late alteration of sedimentary rocks at Meridiani Planum, Mars , 2008 .

[40]  Jan-Peter Muller,et al.  Late Noachian to Hesperian climate change on Mars: Evidence of episodic warming from transient crater lakes near Ares Vallis , 2010 .

[41]  Bruce A. Cantor,et al.  An overview of the 1985-2006 Mars Orbiter Camera science investigation , 2010 .

[42]  A. McEwen,et al.  HiRISE imaging of impact megabreccia and sub-meter aqueous strata in Holden Crater, Mars , 2008 .

[43]  K. Edgett The sedimentary rocks of Sinus Meridiani: Five key observations from data acquired by the Mars Global Surveyor and Mars Odyssey orbiters , 2005 .

[44]  Michael H. Carr,et al.  Water on Mars , 1987, Nature.

[45]  Michael Broxton,et al.  Automated 3D Surface Reconstruction from Orbital Imagery , 2006 .

[46]  Oded Aharonson,et al.  Stratigraphic analysis of the distributary fan in Eberswalde crater using stereo imagery , 2006 .

[47]  James W. Head,et al.  Late Amazonian glaciation at the dichotomy boundary on Mars: Evidence for glacial thickness maxima and multiple glacial phases , 2008 .

[48]  J. Head,et al.  Breccia dikes and crater‐related faults in impact craters on Mars: Erosion and exposure on the floor of a crater 75 km in diameter at the dichotomy boundary , 2006 .

[49]  Maarten G. Kleinhans,et al.  Martian stepped-delta formation by rapid water release , 2008, Nature.

[50]  B. Ivanov,et al.  Impact cratering in H2O‐bearing targets on Mars: Thermal field under craters as starting conditions for hydrothermal activity , 2011 .

[51]  J. Grant,et al.  Geologic map of MTM -15027, -20027, -25027, and -25032 quadrangles, Margaritifer Terra region of Mars , 2013 .

[52]  Nicolas Thomas,et al.  The High Resolution Imaging Science Experiment (HiRISE) during MRO’s Primary Science Phase (PSP) , 2010 .

[53]  Jeffrey R. Johnson,et al.  Surface albedo observations at Gusev Crater and Meridiani Planum, Mars , 2008 .

[54]  M. Malin,et al.  Sedimentary rocks of early Mars. , 2000, Science.

[55]  C. Weitz,et al.  Formation of a terraced fan deposit in Coprates Catena, Mars , 2006 .

[56]  Kenneth S Edgett,et al.  Evidence for Persistent Flow and Aqueous Sedimentation on Early Mars , 2003, Science.

[57]  William E. Dietrich,et al.  Martian Layered Fluvial Deposits: Implications for Noachian Climate Scenarios , 2003 .

[58]  J. Maizels Raised channel systems as indicators of palaeohydrologic change: a case study from Oman , 1990 .

[59]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) , 2007 .

[60]  A. McEwen,et al.  Parautochthonous Megabreccias and Possible Evidence of Impact-induced Hydrothermal Alteration in Holden Crater, Mars , 2009 .

[61]  William K. Hartmann,et al.  Martian cratering 8: Isochron refinement and the chronology of Mars , 2005 .

[62]  Dawn Y Sumner,et al.  Preservation of martian organic and environmental records: final report of the Mars biosignature working group. , 2011, Astrobiology.

[63]  P. Christensen Regional dust deposits on Mars - Physical properties, age, and history , 1986 .

[64]  Bevan M. French,et al.  Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures , 1998 .

[65]  R. Sharp,et al.  Wind Ripples , 1963, The Journal of Geology.

[66]  M. Malin,et al.  Sub-kilometer fans in Mojave Crater, Mars , 2008 .

[67]  R. E. Walker,et al.  Color enhancement of highly correlated images. I - Decorrelation and HSI contrast stretches. [hue saturation intensity , 1986 .

[68]  William K. Hartmann,et al.  Cratering Chronology and the Evolution of Mars , 2001 .

[69]  Boris A. Ivanov,et al.  Mars/Moon Cratering Rate Ratio Estimates , 2001 .

[70]  James R. Zimbelman,et al.  Evaluation of paleohydrologic models for terrestrial inverted channels: Implications for application to martian sinuous ridges , 2009 .

[71]  Ashwin R. Vasavada,et al.  The science process for selecting the landing site for the 2011 Mars Science Laboratory , 2011 .

[72]  J-P Muller,et al.  3D crater database production on Mars by automated crater detection and data fusion , 2008 .

[73]  John P. Grotzinger,et al.  Beyond water on Mars , 2009 .

[74]  J. Bell,et al.  Influence of fault‐controlled topography on fluvio‐deltaic sedimentary systems in Eberswalde crater, Mars , 2011 .

[75]  J. Grant,et al.  Drainage evolution in the Margaritifer Sinus region, Mars , 2002 .

[76]  K. Wohletz,et al.  Impact origin of sediments at the Opportunity landing site on Mars , 2005, Nature.

[77]  T. Gregg,et al.  Ice-rich terrain in Gusev Crater, Mars? , 2007 .

[78]  A. Basilevsky,et al.  The geologic evolution of Mars: Episodicity of resurfacing events , 2010 .

[79]  J. Warren,et al.  A review of the origin and setting of tepees and their associated fabrics , 1987 .

[80]  R. Milliken,et al.  Sources and sinks of clay minerals on Mars , 2010 .