Structured Pseudospectra for Small Perturbations

In this paper we study the shape and growth of structured pseudospectra for small matrix perturbations of the form $A \leadsto A_\Delta=A+B\Delta C$, $\Delta \in \boldsymbol{\Delta}$, $\|\Delta\|\leq \delta$. It is shown that the properly scaled pseudospectra components converge to nontrivial limit sets as $\delta$ tends to 0. We discuss the relationship of these limit sets with $\mu$-values and structured eigenvalue condition numbers for multiple eigenvalues.

[1]  Eduardo Gallestey Alvarez,et al.  Theory and Numeric of Spectral Value Sets , 1998 .

[2]  Stef Graillat,et al.  STRUCTURED CONDITION NUMBERS AND BACKWARD ERRORS IN SCALAR PRODUCT SPACES , 2006 .

[3]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[4]  Diederich Hinrichsen,et al.  Mathematical Systems Theory I , 2006, IEEE Transactions on Automatic Control.

[5]  Anders Rantzer,et al.  Real Perturbation Values and Real Quadratic Forms in a Complex Vector Space , 1998 .

[6]  Françoise Tisseur,et al.  A Chart of Backward Errors for Singly and Doubly Structured Eigenvalue Problems , 2002, SIAM J. Matrix Anal. Appl..

[7]  Michael Karow,et al.  μ-Values and Spectral Value Sets for Linear Perturbation Classes Defined by a Scalar Product , 2011, SIAM J. Matrix Anal. Appl..

[8]  Andrew Packard,et al.  The complex structured singular value , 1993, Autom..

[9]  Diederich Hinrichsen,et al.  Interconnected Systems with Uncertain Couplings: Explicit Formulae for mu-Values, Spectral Value Sets, and Stability Radii , 2006, SIAM J. Control. Optim..

[10]  A. Harrabi,et al.  About Hölder condition numbers and the stratification diagram for defective eigenvalues , 2000 .

[11]  Silvia Noschese,et al.  Eigenvalue condition numbers: zero-structured versus traditional , 2006 .

[12]  Michael Karow,et al.  Structured Pseudospectra and the Condition of a Nonderogatory Eigenvalue , 2010, SIAM J. Matrix Anal. Appl..

[13]  Hiroshi Sekigawa,et al.  The Ratio Between the Toeplitz and the Unstructured Condition Number , 2010 .

[14]  Adrian S. Lewis,et al.  Spectral conditioning and pseudospectral growth , 2007, Numerische Mathematik.

[15]  Julio Moro,et al.  Structured Condition Numbers of Multiple Eigenvalues , 2006 .

[16]  M. Overton,et al.  On the Lidskii-Vishik-Lyusternik Perturbation Theory for Eigenvalues of Matrices with Arbitrary Jordan Structure , 1997, SIAM J. Matrix Anal. Appl..

[17]  Nicholas J. Higham,et al.  More on pseudospectra for polynomial eigenvalue problems and applications in control theory , 2002 .

[18]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[19]  Daniel Kressner,et al.  Structured Eigenvalue Condition Numbers , 2006, SIAM J. Matrix Anal. Appl..

[20]  Adrian S. Lewis,et al.  Variational Analysis of Pseudospectra , 2008, SIAM J. Optim..

[21]  Edward J. Davison,et al.  A formula for computation of the real stability radius , 1995, Autom..

[22]  W. Ledermann,et al.  Eigenvalues of matrices , 2012 .

[23]  L. Trefethen Spectra and pseudospectra , 2005 .

[24]  Françoise Chaitin-Chatelin,et al.  Lectures on finite precision computations , 1996, Software, environments, tools.

[25]  J. Rice A Theory of Condition , 1966 .

[26]  Diederich Hinrichsen,et al.  Spectral value sets: a graphical tool for robustness analysis , 1993 .

[27]  Silvia Noschese,et al.  Eigenvalue patterned condition numbers: Toeplitz and Hankel cases , 2007 .

[28]  S. Rump THE SIGN-REAL SPECTRAL RADIUS AND CYCLE PRODUCTS , 1998 .

[29]  S. Rump EIGENVALUES, PSEUDOSPECTRUM AND STRUCTURED PERTURBATIONS , 2006 .

[30]  Daniel Kressner,et al.  On the Condition of a Complex Eigenvalue under Real Perturbations , 2004 .

[31]  Volker Mehrmann,et al.  Linear Perturbation Theory for Structured Matrix Pencils Arising in Control Theory , 2006, SIAM J. Matrix Anal. Appl..

[32]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[33]  Jie Chen,et al.  Structured singular values and stability analysis of uncertain polynomials, part 1: the generalized m , 1994 .

[34]  Daniel Kressner,et al.  Structured Hölder Condition Numbers for Multiple Eigenvalues , 2009, SIAM J. Matrix Anal. Appl..

[35]  Michael Karow,et al.  EIGENVALUE CONDITION NUMBERS AND A FORMULA OF BURKE, LEWIS AND OVERTON ∗ , 2006 .

[36]  Tosio Kato Perturbation theory for linear operators , 1966 .

[37]  Adrian S. Lewis,et al.  Optimization and Pseudospectra, with Applications to Robust Stability , 2003, SIAM J. Matrix Anal. Appl..

[38]  P. Young Structured singular value approach for systems with parametric uncertainty , 2001 .

[39]  V. I. Sokolov,et al.  The spectra of large Toeplitz band matrices with a randomly perturbed entry , 2003, Math. Comput..

[40]  Shreemayee Bora,et al.  Structured Eigenvalue Condition Number and Backward Error of a Class of Polynomial Eigenvalue Problems Structured Eigenvalue Condition Number and Backward Error of a Class of Polynomial Eigenvalue Problems , 2022 .

[41]  Adrian S. Lewis,et al.  Convexity and Lipschitz Behavior of Small Pseudospectra , 2007, SIAM J. Matrix Anal. Appl..